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Electrochemical reactor optimization using Genetic Algorithms (GAs) has been
attempted in the present work. The objectives have been focused to determine the (i)
optimal design parameters that maximize the yield of the product under specified condi-
tions and (ii) optimal current density that minimizes the operating cost of the reactor. As
a vehicle to do so, a reaction mechanism is considered in which the reactant is electro-
chemically reduced to a desired product and further reduced to an undesired product.
Both, batch and continuous reactors have been considered for performance evaluation
and simulation has been done at various kinetic parameters. To illustrate the potential
utility of genetic search and to justify the use of GAs for this type of optimization prob-
lem, we begin our search for optimality with usual algorithms like Exhaustive search,
Fibonacci search and Golden section search techniques. The comparative results of these
techniques and experimental results show that GAs find optimal reactor cost and product
yield, that is also found to agree with the reactors used in industries and in the reported
literature. As a result, the need to obtain a good initial guess can be eliminated also with
less number of generations to reach optimum level even for a large design problem.
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Introduction

The design and optimization of electrochemical
reactor play an important role in the development
of electrochemical processes. Various search tools
such as Fibonacci, Golden section and Nelder-Mead
simplex search are adopted for optimizing electro-
chemical reactors. The objective of the paper is to
illustrate the utility of GAs technique and potential
benefits realized upon its application. As a vehicle
to do so, the optimum yield that maximizes the pro-
duction of the desired product of a multiple reaction
are determined in, both, batch electrochemical reac-
tor and continuous stirred tank electrochemical re-
actor (CSTER). The series of two electrochemical
reactions involved in an electrochemical reactor is
considered for the demonstration of GAs. The as-
sumptions made in the present approach are (i) sol-
vent decomposition does not occur and (ii) there is
no variation in the parameters of the Tafel equa-
tions. Further, the effect of reversibility in the elec-
trochemical kinetics is observed. Accordingly the
mathematical models of complex electrochemical
reaction schemes have been developed.1,2 The
model is used to simulate the behavior of a poten-
tially useful organic synthesis (the electro reduction
of oxalic acid to glyoxylic acid).3

The mass transport of reactant and products
from/to the electrode surface plays an important

role in describing overall reaction rates. Since the
electricity required per unit of product greatly de-
pend on the plant size, design, and on load rating, in
the present investigation an optimum current density
has been addressed with the objective of minimum
cost of electrolytic cell. The reactor costing model
expressions obtained for use in two ideal reactor
configurations: batch and CSTER are also served as
a model for application to other reaction systems.

Over last decade, GAs have enjoyed a large
scale application for wide spectrum of engineering
design problems.4–7 GAs are search and optimiza-
tion procedure motivated by natural principles and
selection in the quest of producing better and more
suitable individuals. In principle, GAs are very dif-
ferent search algorithm than the traditional search
and optimization techniques. The unique features of
GAs are simplicity, global perspective, and parallel
processing capability. These features make GAs to
solve other search and optimization problems effi-
ciently, including multimodal, multiobjective and
scheduling problems, as well as fuzzy-GA and
neuro-GA implementations. Detailed discussion of
the working of GAs can be found in Goldberg.8 The
aim of this paper is to extend the application of
GAs for electrochemical reactor design and its opti-
mization. The purpose of an optimization algorithm
is to find a solution for which the function has opti-
mum. Once the variable limits are bracketed, a
more sophisticated algorithm needs to be used to
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improve the accuracy of the solution. For the math-
ematical problem under consideration, several algo-
rithms are used that primarily work with the differ-
ent principles. The results obtained from GAs in the
present study are compared with those obtained
from the traditional algorithms for optimization.9

This stochastic optimization method is highly ro-
bust and is very fast in terms of computation time
when compared to the other methods and also it is
well in predicting the exact solutions. The result
show that in all cases the GAs have been able to
converge closer to the optimal value.

The rest of this paper is organized as follows:
First of all the formulation of the optimal electro-
chemical reactor problem is described. Thereafter, a
brief description of the reactor-costing model is
presented. Simulations using GAs has been com-
pared with traditional optimization techniques. Fi-
nally, simulation results of GAs for different condi-
tions are presented. Results show that the optimal
yield and cost is well predicted by GAs while com-
paring with the traditional optimization techniques.
Also, these results seem to be supporting the prac-
tice in industry as documented in Scott.10 The suc-
cess story of GAs in this paper suggests further use
of GAs in similar design problems.

Problem statement

The reactions involved in the electrochemical
reactor, that is used for demonstration of the optimi-
zation using GAs, are consecutive:
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where A denotes oxalic acid, B the product glyoxalic
acid and E the byproduct glycolic acid. Although,
there are other possible side reactions including hy-
drogen evolution, they are ignored for the sake of
simplicity. The kinetics of the two reactions are as-
sumed to be first order with the respect to the reac-
tants and, both, forward and backward reaction
rates are given by Arrhenius–type expressions. The
rate equation may be written as11
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The rate coefficients of electrochemical reac-
tion in equations (2) and (3) are given as (Table 1).
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Batch Electrochemical Reactor

For a series of reaction operating under batch
conditions the material balances may be written as
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From the stoichiometry, the overall material
balance for the above reaction sequence can be
written as

c c c cA A B E0
� � � (9)

The reaction behavior can be obtained from the
variation of cB/cA0 with fractional conversion. Con-
sidering the product distribution at high electrode
potential, mass transfer resistance provides detri-
mental to intermediate product distribution. Substi-
tuting the equations (2) and (3) into equations (6) to
(8), the system can be described by two simulta-
neous first order differential equations, which re-
sults the following solution (assuming kLA = kLB)
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T a b l e 1 – Expressions used for the Evaluation of Constants in the Equations (2) & (3)
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It can be noticed from the equation (10) that
the Damkohler number and the ratio of rate con-
stants affect the product yield. The Damkohler
number and reaction rate constants are subjected to
change within the given limit. The physical data
and operating conditions, that have been considered
for the simulation, are given below12

kL = kLA = kLB = 2.0 · 10–4m s–1,

kf1 = 10–5m s–1, kf2 = kf1/10, kb1 = kb2 = 0,

T = 293.15 K, p = 101325 Pa.

Continuous Stirred Tank
Electrochemical Reactor

The governing material balance for a consecu-
tive reaction in a CSTER can be written as
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The current density j2 is expressed as
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Combining equations (11) to (13), concentra-
tion of cB can be obtained as a function of electrode
potential. Thus the relationship between cB/cA0 and
conversion is given as
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It can be seen from the above equation that
mass transport rate reduces the maximum yield of
product B at a fixed electrode potential. The physi-
cal data and operating conditions used in the simu-
lation of CSTER are the followings.

a = 140.1 m–1, kL = kLA = 10 m s–1, kLB = 10–4 m s–1,

kf10 = 10–13 m s–1, kf20 = kf10/3,

kb10 = kb20 = 0, '1 = 0.162, '2 = 0.157,

�1 = �2 = 0, T = 298.15 K, p = 101325 Pa

Reactor Costing Model

The costs analysis of electrolytic reactor can be
divided into three components namely, the invest-
ment cost, energy cost, and fixed cost.

Investment costs: the cost per unit electrode
area including depreciation and interest on the capi-
tal. The specific investment cost associated with the
electrochemical reactor ‘CR’ is directly proportional
to electrode area and inversely proportional to cur-
rent density, i.e

C a A tR � & &

Electrical Energy Costs: The energy cost is di-
rectly proportional to the current density and other
electrical equipments used. Thus energy cost can be
given by

C bV I tE �

where V is the voltage, the overall voltage balance
may be written as

V V I R j
j

� � �#D | |)

Fixed Costs: The fixed cost consists of amorti-
zation and interest on fixed investment cost and
costs of the wages of personnel whose number is
independent of the current density. It is assumed
that the fixed cost equals the 10 % of this sum. Fi-
nally, the cost of the process operating per unit time
can be conveniently expressed as ampere–hour of
energy supplied, which can be expressed as
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The first term on the right hand side represents
the electrochemical reactor cost, followed by the
cost associated with the energy requirement and the
fixed investment cost. The data used for the simula-
tion are given in Table 2.
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Numerical simulation and results

Coding GAs using MATLAB® 6.0 in a 1.8GHz
Pentium IV processor solves the formulated prob-
lems. The other search techniques are used to solve
the problem by a custom C coding. The other tech-
niques include the Exhaustive search, Fibonacci
search, and Golden section search algorithms. To
have a high accuracy of simulated process vari-
ables, the floating–point representation of variable
has been chosen. Roulette wheel proportionate se-
lection is applied for the reproduction operation. A
single–point crossover operator and a bit–wise mu-
tation operator are used. Table 3 gives the GA pa-
rameters used in the present study. The simulation

results are given in Figure 1. It can be seen from the
figure that the GAs are quite more powerful than
the traditional algorithms. In all cases, the search
has been carried out in the same interval of uncer-
tainty. In Fibonacci and Golden Section methods
the same shrinkage has been produced, resulting
into a greater number of function evaluations in the
case of latter which obviously produces a better re-
sult. One difficulty of Fibonacci search method is
that the Fibonacci numbers have to be calculated
and the total number of experiments to be con-
ducted has to be specified before beginning the
simulation. In order to overcome these two prob-
lems and yet calculate one new function evaluation
per iteration, the golden section search method
(Golden number = 0.618) is used. The Exhaustive
search method is a simultaneous search method in
which all the experiments are conducted before any
judgment is made regarding the location of the opti-
mum point. On the other hand GAs are found to
have surprising speed of convergence to near–opti-
mal solutions. The last two columns in Table 4
compare the performance of various traditional op-
timization algorithms based on the results obtained
form the GAs.
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T a b l e 2 – Parameters used in the Costing Model

Reactions
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Anodic reaction H O H O2 22 2 0 5� $ ��e .

Production flow rate 1.0 kmol h–1 of product B

Process data

Initial reactant concentration 1.0 kmol m–3

Required conversion 0.99

Temperature 298.15 K

Pressure 101325 Pa

Electrolyte resistance (l/*) 500 + m

Availability 12 hours per day

Reaction data (298.15 K)

aa = ac = 0.059V

bc = 200 mV/decade

ba = 150 mV/decade

�c = 95%

�G0 = –222.74475 KJ mol–1

jL = 0.325 A m–2

Costs

Batch reactor

Capital cost coefficient of the
reactor, a

5 MU m–2 h–1

Electricity cost, b 0.00541 MU m–2 h–1

CSTER

Capital cost coefficient of the
reactor, a

6 MU m–2 h–1

Electricity cost, b 0.00941 MU m–2 h–1

Nominal reactor life 10 years

T a b l e 3 – Values of GA Parameters Used in the Present
Work

Number of generations 50

Selection mechanism Roulette method selection

Crossover Simple

Crossover probability 0.6

Mutation Binary

Mutation probability 0.05

Representation of variables Floating point

Coding of simple genetic algorithm MATLAB® 6.0

F i g . 1 – Comparison of various search techniques



The yields obtained at different conditions us-
ing GAs for the fitness function of yield are given
in Table 5; it can be noticed that GAs predict the
real situation more accurately and the yield of the
desired compound for the reaction scheme lies in
the range of 0.52 to 0.83. It has been observed that
the optimum yield of the desired product increases
with decreasing Damkohler number. It has also
been observed that the increasing Damkohler num-
ber enhances reverse reaction. It can be noticed
from Table 6 that the maximum profit expected
from CSTER is less due to poor yield and high op-
erating cost. From the present observation and that
reported in literature, it can be reiterated,13 that the
performance of the CSTER is inferior to that of the
batch electrochemical reactor. The electrochemical

reactor optimization methodology used in the pres-
ent investigation can also be applicable to plug flow
electrochemical reactors, where the batch real time
is replaced by space–time. Three different initial
populations (initial population of 10, 20 and 30)
have been applied to investigate the effect of GA
parameters on the optimum yield. The results show
that in all cases GAs have been able to converge
closer to the same tabulated values. In other simula-
tions with different GA parameter values (popula-
tion number = 50; crossover probability = 0.9; mu-
tation probability = 0.01) identical results were ob-
tained. GA can be used in the modeling of reactors,
even in the presence of poor information of reactor
performance. All these GAs results are consistent
with previous theoretical predictions of glyoxlylic
acid production.3,10

Table 7 gives the best–of–generation cost (total
cost of the process) for, both, batch and continuous
stirred tank electrochemical reactors. A penalty
function approach is used to handle the explicit
constraints. Penalty terms are incorporated in the
fitness function and are said to reduce the fitness of
the string according to the magnitude of their viola-
tion. The fitness function , obtained from the cost-
ing model of the reactor is expressed as
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T a b l e 4 – Comparison of Results for Yield Optimization

Method

Conversion, X Yield, Y Function evaluation % deviation

batch CSTER batch CSTER batch CSTER
conversion yield

batch CSTER batch CSTER

GAs 0.9487 0.8712 0.8303 0.5646 30 30 0 0 0 0

Fibonacci 0.9031 0.8205 0.7997 0.5416 350 375 –4.81 –5.82 –3.66 –4.07

Golden Section 0.8910 0.8122 0.7879 0.5397 377 392 –6.08 –6.77 –5.11 –4.41

Exhaustive 0.7529 0.6749 0.6319 0.4337 957 1156 –20.64 –22.53 –23.89 –23.18

T a b l e 5 – GA Based Optimal Parameters for Batch Elec-
trochemical Reactor at kf1/kf2 = 8.5

Da Conversion Yield
Number of
generations

0.05 0.9084 (0.9080) 0.7410 (0.7395) 20

0.50 0.8835 (0.8812) 0.6598 (0.6589) 20

1.00 0.8615 (0.8599) 0.5904 (0.5896) 20

Values in the parentheses represent the experimental data3,10

T a b l e 6 – GA Based Optimal Parameters for Batch Electrochemical Reactor (Da = 0.05) and CSTER (Da1 = 1748.0 & Da2 =
0.3483)

kf1/kf2

Conversion Yield
Number of generations

batch CSTER batch CSTER

2.5 0.7788 (0.7779) 0.7859 (0.6729) 0.4581 (0.5254) 0.6738 (0.3952) 30

8.5 0.9084 (0.9075) 0.8527 (0.7720) 0.5393 (0.7398) 0.7229 (0.4876) 30

17.0 0.9487 (0.9475) 0.8727 (0.8705) 0.5648 (0.8297) 0.8717 (0.5639) 30

Values in the parentheses represent the experimental data3,10



Here CT is given by the equation (15) and the
fitness is obtained by transforming the minimiza-
tion problem into a maximization problem as

FIT�
�

1

1 ,
(17)

A comparison of near–optimal solutions gener-
ated by GAs with the best result of a number of tra-
ditional optimization methods and experimental
data are also shown in the table. Among the most
striking features of these results is a fact that the
GAs found an optimal solution that optimally satis-
fies the experimental and documented values. The
second most striking feature of the GAs results is
the high performance with quick convergence; it
also requires the less number of total function eval-
uations. It has to be noted that the near–optimal so-
lutions generated by traditional algorithms are ob-
tained after only about 350 iterations. Though not
much of information except the objective function
values are used, GAs quickly simulate a solution
which is comparable with experimental and docu-
mented results.14 From the set of simulation data
used, GA based optimum current density of 5.9348
A m–2 is obtained for a batch electrochemical reac-
tor. For CSTER, the optimum value of current den-
sity is 4.0451 A m–2. These results are encouraging
and suggest the use of GAs in similar reactor design
problems.

One of the advantages of using GAs is that
they usually do not get trapped into local solutions.
In order to show the inherent capability to better
solve noisy and non–stationary problems in the
search space of the above problem, we have also
plotted the cost versus current density in Figure 2
for batch electrochemical reactor. The total cost
curve exhibits a flat curvature around the true mini-
mum indicating that even suboptimal converge at

current densities at some distance from global opti-
mum. But the results obtained for both reactor con-
figurations show that GAs did not get trapped into
one of those local optimum solutions as evident
from the industrial practice. This distinguishes GAs
from other search techniques used. It is worth men-
tioning here that, if a gradient–based optimization
technique is used and an initial guess of the current
density is assumed, the algorithm may have got
struck at a solution with a much lower profit.

Conclusion

GAs have been used to optimize the electro-
chemical reactors for the potentially useful organic
synthesis. A simple GA with reproduction, cross-
over, and mutation operators is able to converge
fast to near–optimal design parameters, after exam-
ining only a small fraction of the search space.
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T a b l e 7 – Comparison of Results for Cost Optimization

Method

Current density,

j / A m–2

Total cost × 10–5

(Rupees)
Function evaluation % deviation

batch CSTER batch CSTER batch CSTER
current density Total cost

batch CSTER batch CSTER

GAs
5.9348
(6.00)

4.0451
(4.25)

5.1815 7.7749 30 30 0 0 0 0

Golden Section 5.8310 3.9852 5.0841 7.6536 423 486 –1.75 –1.48 –1.88 –1.56

Fibonacci 5.816 3.9680 5.0774 7.6349 400 450 –1.99 –1.91 –2.01 –1.80

Exhaustive 4.9437 3.4469 4.2354 6.5572 1115 1218 –16.69 –14.79 –18.26 –15.66

Values in the parentheses represent the experimental data14

F i g . 2 – Minimization of total cost as a function of current
density



Computations using documented data were per-
formed that demonstrates the GAs ability to obtain
optimal parameter estimation. The major applica-
tion of the work lies in the prediction of the perfor-
mance of electrochemical processes during indus-
trial operation. The optimum current density for
maximum yield has been evaluated. The optimum
yield and current density observed in the present in-
vestigation are invariant with respect to the conver-
sion, which agrees with the industrial practice. Pro-
cess economics are particularly sensitive to the val-
ues assigned to the process variables, which would
therefore be given a high priority in any supporting
research programme directed towards the measure-
ment of physical data. For some batch operations
where the end–time constraints should be met
tightly (i.e. for tight control of the product quality),
this approach may be necessary. Thus GAs has
been investigated for its potential use as an optimi-
zation tool in electrochemical reactor engineering.
As a result, there is no need to obtain a good initial
guess to ensure reasonable solution. The total num-
ber of generations to reach optimum can also be de-
creased to a surprising level.

The primary advantages of GAs are that no
gradient or other auxiliary problem information is
required in the search process. Moreover, the im-
plicit parallel processing of the problem informa-
tion makes GAs less likely to converge to a sub op-
timal solution. Because of their simplicity in opera-
tion and minimal requirements, GAs are finding in-
creasing popularity across a broad section of engi-
neering problems. The successful operation in this
particular application, which represents a large
class of similar reactor engineering problems, will
broaden GAs applicability to a wider spectrum of
disciplines.
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N o m e n c l a t u r e

a – area, m2

a – electrode area per unit volume, m2 m–3

ca – specific investment cost, MU m–2 h–1

A – electrode area, m2

aa, ac – Tafel parameter, V
cb – energy cost, MU m–2 h–1

ba, bc – Tafel parameter, V
CE – energy cost, MU m–2 h–1

CF – fixed cost, MU

cj – concentration of the species j, mol m–3

CR – investment cost of reactor, MU m–2 h–1

CT – total cost of operating the process per unit time,
MU m2 h–1

Da – Damköhler number
E – electrode potential, V
F – Faraday’s constant, 96 487 C mol–1

FIT – fitness function
j – current density, A m–2

I – current, A
jL – limiting current density, A m–2

* – conductivity, +–1 m–1

kbi – backward electrochemical rate coefficient of step
i, m s–1

kbi0 – standard backward rate constant of step i (poten-
tial independent), m s–1

kfi – forward electrochemical rate coefficient of step i,
m s–1

kfi0 – standard forward rate constant of step i (potential
independent), m s–1

kL – mass transfer coefficient for liquid, m s–1

kLj – mass transfer coefficient for species j, m s–1

l – inter electrode distance, m
LVC – Limit Violated Constraint
MU – monetary units
n – electrons exchanged in electrode reaction
P – productivity, mol h–1

R – Perfect gas constant, J K–1 mol–1

t – time, h
V – Total Voltage, V
VD – decomposition voltage, V
X – conversion
Y – yield
'i – potential dependency of forward reaction rate co-

efficient, V–1

�i – potential dependency of backward reaction rate
constant, V–1

)act – activation overpotential, V
)Conc – concentration overpotential, V
�c – current efficiency
( – residence time, h
�G0 – Gibbs free energy change, J mol–1

, – objective function to be minimized for total cost
minimization

 – penalty factor

S u b s c r i p t s

0 – initial condition
a – anode
c – cathode
j – compound j
K – constraint function Portia Matseke {WITS}
Limit – constraint limit
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S u p e r s c r i p t

b – bulk condition

Subscripts 1 and 2 refer to the reactions A 1 B and
B 1 C respectively.
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