Journal of The Electrochemical Society, **151** (11) A1836-A1840 (2004) 0013-4651/2004/151(11)/A1836/5/\$7.00 © The Electrochemical Society, Inc.

Thermal Stability of Electrolytes with Mixtures of LiPF₆ and LiBF₄ Used in Lithium-Ion Cells

Eui-Sun Hong,^{a,c} Shigeto Okada,^{a,*} Takaki Sonoda,^a S. Gopukumar,^{a,b} and Jun-ichi Yamaki^{a,*,z}

^aInstitute for Materials Chemistry and Engineering, Kyushu University, Kasuga Koen 6-1, Kasuga 816-8580, Japan ^bCentral Electrochemical Research Institute, CSIR, Karaikudi-630 006, TamilNadu, India

Thermal stability studies of electrolytes with mixtures of LiPF_6 and LiBF_4 were carried out using differential scanning calorimetry. The solvent was a mixture of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in the volume ratio of 3:3:1, respectively. We expected the occurrence of two independent exothermic peaks associated with LiPF_6 at the lower temperature and lithium LiBF_4 at the higher temperature, due to decomposition reactions resulting in the Lewis acids PF_5 and BF_3 . Instead, the mixed salt electrolyte exhibited a single exothermic peak. We deduced that the HF produced by the reaction of LiPF_6 with solvent was the reason for the existence of one exothermic reaction peak. The HF may react with LiBF_4 to give HBF_4 , which is very unstable and decomposes easily to HF and BF_3 at a lower temperature than the decomposition temperature of LiBF_4 itself. By comparison, a thermal study of a mixed salt electrolyte including LiPF_6 and $\text{LiN}(\text{SO}_2\text{CF}_3)_2$ showed that the exothermic reaction of $\text{LiN}(\text{SO}_2\text{CF}_3)_2$ with solvents is also influenced by HF produced in the reaction of LiPF_6 with solvents but that the strength of the influence is small compared with its effect on an electrolyte mixture including LiBF_4 .

Manuscript submitted October 7, 2003; revised manuscript received May 14, 2004. Available electronically October 7, 2004.

The lithium-ion battery is an attractive alternative to other batteries in view of its several merits, including high cell voltage, high energy density, light weight, etc. Recently, demand for Li-ion batteries has increased exponentially because of their common application as a power source for electronic portable devices, in addition to their potential for electric vehicles and other high-power equipment. In spite of the above merits and applications, however, lithium batteries often suffer from serious safety problems due to the flammable organic compounds used as electrolytes. It is well known that the electrodes in Li-ion batteries undergo exothermic reactions with electrolyte^{1,2} when exposed to elevated temperatures. If the heat output during this process exceeds the thermal diffusion, then thermal runaway in Li-ion battery occurs.^{3,4} Therefore, the heat generated by chemical decomposition and chemical reactions in the Liion battery is an important factor that must be considered in making a safer Li-ion battery.

Several researchers have reported on safety tests of Li-ion batteries,5-7 and the thermal behavior of Li-ion batteries has been investigated using differential scanning calorimeter (DSC)⁸⁻¹¹ and accelerating rate calorimeter (ARC).^{12,13} However, most of the thermal studies have focused on electrolytes involving only one kind of Li salt,^{8,10,11} as well as electrode materials.^{9,14-18} Further, in electrolytes with LiPF₆, it is usually believed that the exothermic reaction of the electrolyte is due to the existence of a strong Lewis acid (PF_5) produced from the LiPF₆ that is not ionized to free Li⁺ and free PF_6^{-} .¹⁹ Therefore, it is of interest to carry out a systematic study on the thermal stability of an electrolyte containing two kinds of Li salts (LiPF₆, LiBF₄) using DSC. The electrolyte solvent used is a ternary solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC).²⁰⁻²³ We sought to measure heat generated during electrolyte decomposition and elucidate the individual contributions of LiPF₆ and LiBF₄ in Li salt mixtures. Finally, we were interested in ascertaining the reaction mechanism of exothermic reactions that take place in electrolytes containing Li salt mixtures on the basis of the above exothermic reaction.

Experimental

The electrolytes were 1 M $LiPF_6$, $0.67 \,\mathrm{M}\,\mathrm{LiPF}_{6}$ + 0.33 M LiBF_4 , 0.5 M LiPF_6 + 0.5 M LiBF_4 , $0.33 \,\mathrm{M}\,\mathrm{LiPF}_{6}$ + 0.67 M LiBF₄, 1 M LiBF₄, and 1 M LiN(SO₂CF₃)₂, each with EC:DMC:DEC = 3:3:1 volume ratio. 1 M LiPF₆-EC, 1 M LiPF₆-DMC, 1 M LiPF₆-DEC, 1 M LiBF₄-EC, 1 M LiBF₄-DMC, and 1 M LiBF₄-DEC were obtained from Tomiyama Chemical Co., Japan. The water content of these solutions was less than 20 ppm. A 4 µL portion of the solution was placed into a 20 µL stainless steel sample pan, which was then crimp-sealed with a stainless steel lid. All these processes were carried out in an argon-filled glove box. The thermal stability of the electrolytes contained in the airtight pans was measured by a thermogravimetry-differential scanning calorimeter (TG-DSC) instrument (Rigaku, Thermo plus, Japan). At the same time, TG measurement was performed to ascertain that there was no leak of the crimp-sealed pan. The DSC heating rate was 5°C/min.

Results and Discussion

The DSC profiles of the 1 M $\rm LiPF_6,~1$ M $\rm LiBF_4,$ and 1 M lithium salt mixture (molar ratios of LiPF₆ to LiBF₄ were 0.67:0.33, 0.5:0.5, and 0.33:0.67) in the 3:3:1 mixture of EC, DMC, and DEC are presented in Fig. 1. It was observed that the exothermic reaction peak temperatures of the electrolyte solutions are located around 265 and 320°C for 1 M LiPF₆ and 1 M LiBF₄, respectively (Fig. 1a and b). In lithium salt mixtures, there is also only one exothermic reaction peak; as the concentration of LiPF₆ salt increases, the exothermic reaction peak temperature moves closer to the exothermic peak temperature of 1 M LiPF₆. Sloop *et al.* has suggested that LiPF₆, which is not ionized in electrolytes, produces a strong Lewis acid, PF₅, thereby attacking the lone pair of electrons in the oxygen of solvent molecules.¹⁹ LiBF₄ is similar to LiPF₆ and therefore BF₃, a strong Lewis acid produced from LiBF₄, could decompose the solvents. If no interactions exist between LiPF₆ and LiBF₄ when mixed, it would follow that the main exothermic reaction peak of the electrolyte mixtures would be split in two. However, as shown in Fig. 1, the mixtures showed no evidence of split exothermic reaction peaks that might be associated with the individual contributions of LiPF₆ and LiBF₄.

There were shoulders at a lower temperature side of the peaks for (c) $(0.5 \text{ M LiPF}_6 + 0.5 \text{ M LiBF}_4 \text{ electrolyte})$ and (d) $(0.33 \text{ M LiPF}_6 + 0.67 \text{ M LiBF}_4 \text{ electrolyte})$ in Fig. 1. The shoulders

^{*} Electrochemical Society Active Member.

^{c)} Present address: Samsung SDI Co., Ltd., Mobile Energy Business Team, Development Group, Chungchongnam-Do, Korea.

^z E-mail: yamaki@cm.kyushu-u.ac.jp

Figure 1. DSC profiles of LiPF_6 , LiBF_4 , and $\text{LiPF}_6 + \text{LiBF}_4$ in EC + DMC + DEC (3:3:1) solvents; (a) 1 M LiPF_6 , (b) 0.67 M LiPF_6 + 0.33 M LiBF_4 , (c) 0.5 M LiPF_6 + 0.5 M LiBF_4 , (d) 0.33 M LiPF_6 + 0.67 M LiBF_4 , and (e) 1 M LiBF_4 .

seem to be caused by a two-step reaction of the exothermic reaction. The first step is a decomposition caused by LiPF₆. The second is a decomposition by some product of the first step. At the second step, LiBF₄ decomposes at a lower temperature than that without LiPF₆. Figures 2 and 3 show the DSC profiles of unmixed LiPF₆ and LiBF₄ electrolytes at 1, 0.5, and 0.25 M. The shoulder in Fig. 1 is caused by the first step reaction. For example, $0.5 \text{ M LiPF}_6 + 0.5 \text{ M LiBF}_4$ electrolyte has a shoulder at around 260°C (Fig. 1c), which is caused by the decomposition of 0.5 M LiPF₆ as shown in Fig. 2b. When the concentrations of some decomposition products of the first step increase, LiBF₄ also begins to decompose. The second peak temperature (340°C) of 0.5 M LiBF₄ electrolyte as shown in Fig. 3b.

However, we still considered the possibility that the absence of split peaks was due to the deficiency of the solvent: it could be that all the solvent reacted with PF_5 before the reaction with BF_3 could take place. To check this hypothesis, we decided to decrease the concentration of Li salts. Figure 4 shows the DSC profiles of mixed LiPF₆ + LiBF₄ electrolytes at (a) 0.5 M LiPF₆ + 0.5 M LiBF₄ (b) 0.25 M LiPF₆ + 0.25 M LiBF₄, and (c) 0.165 M LiPF₆ + 0.165 M LiBF₄. The exothermic peak temperatures shifted to a higher temperature as the concentration decreased. Still, as seen in Fig. 4, the main exothermic reaction peak was not

Figure 2. DSC profiles of $LiPF_6/EC + DMC + DEC$ (3:3:1); (a) 1 M $LiPF_6$, (b) 0.5 M $LiPF_6$, and (c) 0.33 M $LiPF_6$.

Figure 3. DSC profiles of $LiBF_4/EC + DMC + DEC$ (3:3:1); (a) 1 M $LiBF_4$, (b) 0.5 M $LiBF_4$, and (c) 0.33 M $LiBF_4$.

clearly split despite the lower volume of LiPF₆. Rather, a decrease in heat was observed to result from the decrease of salt concentration, suggesting that deficiency of solvent is not the cause of the peak behavior. Figure 4 (ref.) shows the DSC profile of 0.5 M LiPF₆ electrolyte. Compared to Fig. 4a, the 0.5 M LiPF₆ + 0.5 M LiBF₄ electrolyte, the 0.5 M LiPF₆ electrolyte shows a smaller amount of heat generation. This result clearly indicates that LiBF₄ also contributes in the reaction of the 0.5 M LiPF₆ + 0.5 M LiBF₄ electrolyte. We can infer the following based on these results: (*i*) the order for the onset and main peak temperature of used Li salts was LiPF₆ < LiPF₆ + LiBF₄ < LiBF₄; (*ii*) the increase in exothermic heat quantity follows the order LiBF₄ < LiPF₆ < LiPF₆ + LiBF₄; and (*iii*) as demonstrated by Botte *et al.*,⁸ the lower the concentration of Li salt, the higher the onset temperature and main peak temperature. These results are summarized in Fig. 5.

We tried two additional experiments to confirm that a single main exothermic reaction peak is present for electrolyte containing $\text{LiPF}_6 + \text{LiBF}_4$. The first experiment was to decrease the scan rate of DSC from 5 to 1°C/min to attempt to separate the two reactions if they are indeed separate. The electrolyte used was 0.33 M LiPF₆ + 0.67 M LiBF₄ in EC:DMC:DEC (3:3:1). The concentration of LiPF₆ was selected to be 0.33 M to decrease the influences of LiPF₆, which decomposes solvents at a lower temperature than

Figure 4. DSC profiles of LiPF₆ + LiBF₄/EC + DMC + DEC (3:3:1); (a) 0.5 M LiPF₆ + 0.5 M LiBF₄, (b) 0.25 M LiPF₆ + 0.25 M LiBF₄, and (c) 0.165 M LiPF₆ + 0.165 M LiBF₄ (ref.) 0.5 M LiPF₆.

Figure 5. Comparison of (a) onset (b) peak, and (c) exothermic heat reaction of electrolytes in EC/DMC/DEC with LiPF₆, LiBF₄, and LiPF₆ + LiBF₄. The concentrations of LiPF₆ + LiBF₄ at 0.33 M, 0.5 M, and 1 M were 0.165 M: 0.165 M, 0.25 M; 0.25 M, and 0.5 M; 0.5 M, respectively.

LiBF₄. As shown in Fig. 6, only a single peak was observed even though the scan rate was decreased. The total exothermic heat at 1° C/min was almost the same as that at 5° C/min.

The second experiment was to preheat the electrolyte $(0.33 \text{ M LiPF}_6 + 0.67 \text{ M LiBF}_4$ in EC:DMC:DEC (3:3:1)). The electrolyte was heated to 260, 268, and 272°C using DSC and subsequently cooled to 50°C followed by a final DSC measuring up to 430°C. The scan rate was 5°C/min. This experiment was designed to separate the reaction with LiPF₆ and LiBF₄. The temperatures were selected so as not to induce any reaction of LiBF₄ with the solvent.

Figure 6. DSC profiles for $0.33 \text{ M LiPF}_6 + 0.67 \text{ M LiBF}_4$ in EC/DMC/ DEC (3:3:1) solvents at scan rates of 1°C/min.

Figure 7. DSC profiles for $0.33 \text{ M LiPF}_6 + 0.67 \text{ M LiBF}_4$ in an EC/DMC/DEC (3:3:1) solvent mixture at scan rates of 5°C/min. The electrolyte was heated to 430°C after heating to (a) 260°C, (b) 268°C, (c) 272°C, (d) 275°C, and (e) no heating.

Figure 7 shows the resulting DSC profile of the experiment: the main exothermic peaks after the preheating shifted to a lower temperature. From Fig. 3, the peak of 0.67 M LiBF₄ electrolyte is found to be from 320 to 340°C. Therefore, the reactions with LiPF₆ and LiBF₄ cannot be separated from each other by preheating. Some reaction product created by the reaction with LiPF₆ must shift the reaction temperature with LiBF₄ to a lower temperature.

It was proposed by Kawamura *et al.*¹⁰ that the decomposition of DEC solvent with LiPF₆ as electrolyte takes place as follows

$$\text{LiPF}_6(s) \leftrightarrow \text{LiF}(\downarrow) + \text{PF}_5(\uparrow)$$
 [1]

 $C_2H_5OCOOC_2H_5 + PF_5 \rightarrow C_2H_5OCOOPF_4 + HF + CH_2$

$$C_2H_5OCOOPF_4 \rightarrow PF_3O + CO_2 + C_2H_4 + HF$$
 [3]

$$C_2H_5OCOOPF_4 + HF \rightarrow PF_4OH + CO_2 + C_2H_5F$$
 [4]

Similarly, we can expect that HF could be produced from the reactions of either EC or DMC with PF_5 . Further, HF produced from the above reactions can also influence $LiBF_4$ in the following manner

1.874 A

1.873 A

710 A

1.758 A

1.717 A

∕**⊘** Li⁺

1.758 A

1.710

1.588 A

1.588 A (b) LiPF6

1.351 A

(d) LiBF4

1.588 A

1.491

1.351 A

Figure 8. Optimized structures of HPF₆, LiPF₆, HBF₄, and LiBF₄ by B3LYP/6-31G* calculation.

0.936 A

1 2,256 A

1.587 A

0.940 A

ОH+

2.211 A

• : F

2.889

1.564 A

(a)HPF6

1.335 A

(c)HBF4

2.267 A

1.569 A

1.596 A

1.319 A

1.319 A

$$LiBF_4 + HF \rightarrow LiF + HBF_4$$
 [5]

$$HBF_4 \to HF + BF_3$$
 [6]

One possible explanation for the observed unique behavior of Li salt mixtures may be ascribed to the role of HF produced from the reaction of LiPF₆ with solvent. The mechanism of HF-catalyzed decomposition of LiBF₄ can be understood by calculating the optimized structures of HPF₆, HBF₄, and their lithium salts. The calculation was undertaken without considering any interaction with other molecules. LiPF₆ and LiBF₄ make contact ion-pairs in electrolyte with the influence of solvents. Therefore, the reliability of our calculation is limited. However, we think that our calculation results still have some meaning to predict the stability of the molecules, and would like to introduce our result. Figure 8 depicts the calculated interatomic distances for (a) LiPF₆, (b) HPF₆, (c) LiBF₄, and (d) HBF₄ obtained by B3LYP/6-31G* calculation. The coordination number of H^+ or Li^+ to the F atom of PF_6 is changed from 1 to 3, and the most stable case was shown here. It is clearly seen from Fig. 8a and b that the interatomic distance between H coordinated with F and P for HPF₆ is longer than that between Li and P for LiPF₆, *i.e.*, 2.889 and 1.717 Å, respectively. Thus we can say that the replacement of lithium by hydrogen decreases the stability of PF₆ anion by increasing the interatomic distances of P and F atoms, thereby initiating the formation of HF as $HF + PF_5$. The case with HBF₄ and LiBF₄, shown in Fig. 8c and d, is similar. Therefore, the HBF₄ product in Reaction 5 is very unstable, and HBF₄ can further decompose to other products, *i.e.*, HF and BF₃ as shown in Reaction 6. If HF exists in the LiBF₄ electrolyte, BF₃ is produced from HBF₄ at a lower temperature. Therefore, the reaction with LiPF₆ and $LiBF_4$ cannot be separated in the $LiPF_6 + LiBF_4$ electrolytes. HF produced from Reaction 6 reacts with LiBF₄ in Reaction 5 and finally it is observed that the cycling of Reactions 5 and 6 accelerates electrolyte decomposition.

The effect of mixing LiPF_6 and $\text{LiN}(\text{SO}_2\text{CF}_3)_2$ in the solvents was also investigated using the DSC-TG technique. Because the $\text{LiN}(\text{SO}_2\text{CF}_3)_2$ does not decompose to form a Lewis acid (PF₅ and

Figure 9. DSC profiles of $\text{LiPF}_6 + \text{LiN}(\text{SO}_2\text{CF}_3)_2$ electrolytes in mixed EC/DMC/DEC (3:3:1) solvent; (a) 0.5 M LiPF_6 , (b) 0.5 M $\text{LiN}(\text{SO}_2\text{CF}_3)_2$, and (c) 0.5 M $\text{LiPF}_6 + 0.5$ M $\text{LiN}(\text{SO}_2\text{CF}_3)_2$.

BF₃), HF-catalyzed decomposition will not occur; therefore, it is interesting to investigate its behavior in contrast to LiBF₄. An electrolyte comprised of 0.5 M LiPF₆ and 0.5 M LiN(SO₂CF₃)₂ in EC, DMC, and DEC (3:3:1) depicts three characteristic peaks located at 270, 350, and 410°C (Fig. 9c). The main peak at 270°C is related to the reaction with LiPF₆ because the 0.5 M LiPF₆ electrolyte shows an exothermic peak at a similar temperature (Fig. 9a). The amount of the heat generation is larger for the $0.5 \,\mathrm{M}\,\mathrm{LiPF}_6$ + $0.5 \,\mathrm{M}\,\mathrm{LiN}(\mathrm{SO}_2\mathrm{CF}_3)_2$ electrolyte, which suggests that $LiN(SO_2CF_3)_2$ also contributes to the main peak reaction of $LiPF_6$ + $LiN(SO_2CF_3)_2$ electrolyte. However, the remaining two small peaks are related to the reaction of LiN(SO₂CF₃)₂ because the $LiN(SO_2CF_3)_2$ electrolyte shows two peaks at 330 and 360°C. This clearly suggests that the exothermic reaction of $LiN(SO_2CF_3)_2$ with solvents is influenced by some products produced by the reaction of LiPF₆ with solvents, but that the magnitude of the influence is smaller than with Li salt mixture containing LiPF₆ and LiBF₄. This result supports the conclusion that the reaction product, which catalyzes the LiBF₄ decomposition, is HF. This result supports the conclusion that the reaction product, which catalyzes the LiBF₄ decomposition, is HF.

Conclusions

We conclude that a single exothermic reaction peak is observed for a mixed $\text{LiPF}_6 + \text{LiBF}_4$ electrolyte in a mixed EC/DMC/DEC (3:3:1) solvent. There were shoulders at a lower temperature side of the single exothermic reaction peak. The shoulders seem to be

caused by a two-step reaction of the exothermic reaction. The first step is a decomposition caused by LiPF_6 . The second step is a decomposition by some product of the first step. At the second step, LiBF_4 decomposes at a lower temperature than a LiBF_4 electrolyte without LiPF_6 . One candidate for the decomposition product of the first step which causes the second reaction is HF. However, further work must be done to identify the decomposition product

Mixing LiPF₆ with LiN(SO₂CF₃)₂ in the same EC/DMC/DEC (3:3:1) solvent mixture resulted in independent exothermic reaction peaks associated with either electrolyte. However, LiPF₆ has a larger exothermic reaction heat in comparison to LiN(SO₂CF₃)₂. This confirms that the exothermic reaction of LiN(SO₂CF₃)₂ with solvents is influenced similarly by some decomposition products of the first step but with a different result from the LiPF₆ and LiBF₄ mixture.

Acknowledgment

The authors thank Japan Science and Technology Corporation, Japan, for supporting this work. E.S.H. is thankful to Samsung SDI Co., South Korea, for deputing to Kyushu University, Japan. S.G.K. thanks CECRI, Karaikudi (CSIR, New Delhi), India, for grant of leave and also Kyushu University for offering a visiting professorship.

Kyushu University assisted in meeting the publication costs of this article.

References

P. Biensan, B. Simon, J. P. Peres, A. deGuibert, M. Broussely, J. M. Bodet, and F. Perton, J. Power Sources, 81-82, 906 (1999).

- H. Maleki, G. Deng, A. Anani, and J. Howard, J. Electrochem. Soc., 146, 3224 (1999).
- 3. S. Tobishima and J. Yamaki, J. Power Sources, 81-82, 882 (1999).
- S. Tobishima, K. Takei, Y. Sakurai, and J. Yamaki, J. Power Sources, 90, 188 (2000).
- 5. G. Venugopal, J. Power Sources, 101, 231 (2001).
- G. L. Henriksen, D. R. Bissers, and A. A. Chilenskas, J. Power Sources, 54, 134 (1995).
- 7. J. Yamaki, Y. Sakurai, and S. Tobishima, J. Power Sources, 68, 455 (1997).
- 8. G. G. Botte, R. E. White, and Z. Zhang, J. Power Sources, 97-98, 570 (2001).
- 9. Y. Baba, S. Okada, and J. Yamaki, Solid State Ionics, 148, 311 (2002).
- T. Kawamura, A. Kimura, M. Egashira, S. Okada, and J. Yamaki, J. Power Sources, 104, 260 (2002).
- N. Katayama, T. Kawamura, Y. Baba, and J. Yamaki, J. Power Sources, 109, 321 (2002).
- 12. D. D. MacNeil and J. R. Dahn, J. Electrochem. Soc., 149, A912 (2002).
- 13. D. D. MacNeil and J. R. Dahn, J. Electrochem. Soc., 150, A21 (2003).
- 14. Y. Sato, K. Kanari, K. Takano, and T. Masuda, Thermochim. Acta, 296, 75 (1997).
- 15. Z. Zhang, D. Fouchard, and J. R. Rea, J. Power Sources, 70, 16 (1998).
- J. R. Dahn, E. W. Fuller, M. Obrovac, and U. von Sacken, *Solid State Ionics*, 69, 265 (1994).
- 17. D. D. MacNeil and J. R. Dahn, J. Electrochem. Soc., 148, A1205 (2001).
- A. M. Andersson, K. Edstrom, and J. O. Thomas, J. Power Sources, 81-82, 8 (1999).
- S. E. Sloop, J. K. Pugh, S. Wang, J. B. Kerr, and K. Kinoshita, *Electrochem. Solid-State Lett.*, 4, A42 (2001).
- Q. F. Dong, C. Z. Wu, M. G. Jin, Z. C. Huang, M. S. Zheng, J. K. You, and Z. G. Lin, *Solid State Ionics*, 167, 49 (2004).
- 21. M. Holzapfel, F. Alloin, and R. Yazami, Electrochim. Acta, 49, 581 (2004).
- 22. J. S. Gnanaraj, V. G. Pol, A. Gedanken, and D. Aurbach, Electrochem. Commun., 5,
- 940 (2003).
 G. T. K. Fey, Z. X. Weng, J. G. Chen, and T. P. Kumar, *Mater. Chem. Phys.*, 82, 5 (2003).