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Electrostatic energy (Madelung energy) is a major constituent of the cohesive energy of ionic crystals. Several
physicochemical properties of these materials depend on the response of their electrostatic energies to a variety
of applied thermal, electrical, and mechanical stresses. In the present study, a method has been developed
based on Ewald’s technique to compute the electrostatic energy arising from ion-ion interactions in ionic
crystals such as LixMn2O4 with variable stoichiometries and mixed valencies. An interesting application of
this method in computing the voltages of lithium ion batteries employing spinel cathodes is presented for the
first time. The effect of including additional interaction terms such as the short-range and the multipolar was
estimated and was found to necessitate only a fairly small change in the battery voltage. The advantages of
the present method of computation over existing methods are also discussed.

Introduction

Electrostatic energy of ionic crystals1-3 is an important
constituent of the cohesive energy4 of these crystals. Various
physicochemical properties such as melting points, heats of
fusion and evaporation, and activation energies for formation
and diffusion of electronic and atomic point defects are related
to the solid-state cohesion.5 Response of the lattice energy
toward a variety of applied thermal, electrical, and mechanical
stresses leads to piezoelectric, ferroelectric, and electrochromic
properties of these materials. Madelung energy computations
have also recently generated much interest.6-9 A Madelung
model has been used to predict the dependence of the lattice
parameter on the nanocrystal size.6 Three-dimensional systems
periodic in one direction have been simulated using the Ewald
summation method.2,7 Madelung constants were computed for
a wide variety of ionic crystals, and it was further shown that
structural phase transitions could also be probed within this
framework.8 More recently, Madelung type long-range Coulomb
interactions were shown to be important in fixing the optimal
doping level, that is, the stoichiometry, in high-temperature
superconductors.9

Electrostatic energies of simple ionic crystals of fixed
stoichiometries and valencies such as CsCl, NaCl, and ZnS have
already been calculated and reported as Madelung constants in
the literature. This energy, however, is no more a constant for
nonstoichiometric and multivalent compounds (e.g., VOx,
UO2+x, LixCoO2, LiMn2O4, LixWO3, NaxWO3, TiOx, and
Li xMn2-yMyO4 with dopant) as it varies with the stoichiometry
as well as with the valency. A method has been developed in
the present study to compute the electrostatic energy arising
from ion-ion interactions in ionic crystals of variable stoichi-
ometries and mixed valencies. A novel use of this method in
computing the voltage of lithium ion batteries with electrodes
of variable stoichiometries and valencies is presented with Lix-
Mn2O4, a widely studied cathode material used in high-voltage
lithium-ion batteries, as a specific example.

It must be pointed out that in addition to the long-range
electrostatic interactions contained in the Madelung part, other
interactions such as the short-range electron-electron repulsion
and dipole-dipole and dipole-quadrupole interactions also
contribute to the total energy of the crystal. The effect of these
other interactions on the battery voltage was estimated and found
to be not as significant as the major electrostatic component.

Ewald Method Applied to Ionic Crystals of Variable
Stoichiometries and Mixed Valencies

In this section, Ewald’s technique has been applied to
compute the long-range electrostatic interactions in ionic crystals
of variable stoichiometries and mixed valencies. Any ionic
crystal may be specified by giving its crystallographic space
group, the unit cell parameters (corresponding to the primitive,
conventional, or super cells) and the corresponding basis
(consisting of a set of ions). The electrostatic energy of ionic
crystals is usually expressed as a sum of pairwise Coulombic
terms given by

wherezi andzj are the valencies of theith andjth ions andrij

is the interionic distance. The sum runs over all ion pairs. To
apply Ewald’s method for crystals of variable stoichiometries
and mixed valencies, the above sum is expressed in terms of
contributions arising from several sublattices present in the
crystal so that the stoichiometry and the valency can be tuned
in each sublattice. Hence, the appropriate form for the energy
will be

whereN is the number of ions in the basis and is also the number
of sublattices into which the crystal can be split. The factor 1/2
removes the double counting of the pair interaction.* To whom correspondence should be addressed.
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Using Ewald’s method, one can obtain the final expression

where

S* is the complex conjugate ofS, G is the convergence factor,
and r i

j ) r i - r j.
The details of the derivation and the meaning of the symbols

appearing in eq 3 are given in the Appendix. It must be noted
that, though the Ewald method is well-known, its present
application is new. Equation 3 is the most general form for the
electrostatic energy in ionic crystals with variable stoichiometries
and mixed valencies. It forms the basis of Madelung energy
computations for systems with variable stoichiometries and
valencies.

Choice of Unit Cells for Crystals with Sublattice Order
and Sublattice Disorder vis-à-vis Variable Stoichiometries
and Valencies

In the previous section, a method of arriving at a general
formula for the electrostatic energy of any ionic crystal with
variable stoichiometries and valencies was reported. Before
proceeding toward computing the electrostatic energy, it is
desirable to clarify the meaning of theλ(i)’s (i ) 1 to N).

For regular stoichiometric ionic crystals such as NaCl, CsCl,
and ZnS, these effective charges are integral quantities. In the
case of nonstoichiometric or variable stoichiometric crystals,
there arises a need to distinguish between crystals with sublattice
order or sublattice disorder. For crystals with sublattice order,
these effective charges will again be integral quantities whereas
for crystals with sublattice disorder they will be fractional,
reflecting the random distribution of ions and their valencies in
the sublattices. For the computation, one can choose the
primitive unit cell, the conventional unit cell, or even the super
cell depending on the problem at hand. Choosing the primitive
unit cell would certainly take the least computational time.
However, though it can handle efficiently cases with sublattice
disorder, it has obvious limitations for cases with sublattice
ordering. Super cells may be required to deal efficiently with
cases of sublattice ordering with variable stoichiometry and
valence. At the end stoichiometries, namely,x ) 0 andx ) 1
of Li xMn2O4, there is no sublattice disorder. It is for the
intermediate stoichiometries that one needs to encounter the
question of sublattice order versus sublattice disorder. No
particular Li sublattice order has been reported in the literature
so far for the intermediate stoichiometries and, hence, a Li
sublattice with disorder is employed in our work.

To clarify the above issues, a discussion using a specific
crystal, for example, LixMn2O4, will help. This is an oxide
belonging to the class of spinels with space groupFd3m.10 The
primitive basis has two lithium ions, eight oxide ions, and four
manganese ions. The oxide ion valence can be considered fixed
at 2- and the lithium ion valence at 1+. This crystal is a mixed-
valent compound with respect to the oxidation state of the
manganese ion. When the stoichiometryx of the spinel varies
from 0 to 1, the valence of the Mn ion continuously varies from

a state of all 4+ to a mixed-valent state of 50% of 4+ and
50% of 3+. At this point, two cases arise: (i) spinel with
sublattice ordering and (ii) spinel with sublattice disorder. For
case i, thex value is restricted to 0, 0.5, and 1 if we choose the
primitive basis for the energy computation, and for enlarging
the scope of the computation to more values ofx, one will have
to move on from the primitive to conventional and even to super
cells. For case ii, the primitive basis alone can handle all values
of x.

Regarding the oxidation states of the atomic species (Li, Mn,
and O), there is a general consensus11 in this field that these
ions do take the charge states assumed in this paper. However,
the ultimate test would be the agreement with experiments.
Mössbauer spectroscopy has also confirmed the proposed
assignment of the oxidation states.12 Quantum simulation is also
expected to throw light on this question. However, it is beyond
the scope of our work.

Details of the Computation and Results

A program was written to implement eq 3 for the computation
of Madelung energy. Inputs to the program were as follows:
space group of the spinel, cubic lattice constant and the atomic
positions of the 14 ions in the primitive cell (four Mn, eight O,
and two Li ions), convergence factorG set as 1 with a grid size
of 10× 10 × 10 for both direct and reciprocal lattices, and the
stoichiometry- and valency-dependent parameters, namely, the
λ(i)’s, fixed as follows:

It may be further noted from eq 3 that the stoichiometry-
and valency-dependent parameters, namely, theλ(i)’s, are pro-
ducts separable from a host of factors, which dependonly on
the crystal structure. These can be viewed as a set of generalized
Madelung constants, which take the place of the single Made-
lung constant for conventional stoichiometric crystals.

Before applying it to cases of variable stoichiometry and
valency, eq 3 was tested against conventional systems such as
NaCl, CsCl, and ZnS. The Madelung energy calculated using
eq 3 matched with the values reported in the literature1 correct
to five decimal places. When applied to the spinel LixMn2O4,
λ(i)’s are no more constant as for conventional systems but vary
as a function ofx. The result of applying eq 3 to compute the
Madelung energy of this spinel as a function ofx is presented
in Figure 1. The figure is almost linear.

The program was executed on a 1.13-GHz Pentium III, and
the total energy computation (for all values ofx) took nearly 8
h. It is to be noted here that Ceder and co-workers used quantum
ab initio methods to compute the total energy of layered oxides
of lithium on a Cray C 90 Supercomputer, which is reported to
take 1 h for one total energy calculation.13,14 The authors have
computed total energies foronly x ) 0 and x ) 1. For
intermediate values ofx, one need to do computation on
superstructures, which requires computational speeds that are
beyond the limits of present-day resources.

Discussion and Application to Lithium-Ion Battery
Voltage Computation

The values ofx ) 0 andx ) 1 in LixMn2O4 correspond to
the fully charged and the fully discharged states of the battery,
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respectively. In this section, the voltage of the battery system
is modeled using the Madelung energies computed in the
previous sections.

Battery System: LixMn2O4/Li + Ion Carrying Electrolyte/
Li Metal. The electrode reactions in this battery can be
represented as

Adding eqs i and ii

(note: for everyν moles of LixMn2O4, 1 F passes through the
circuit)

The battery voltage is given by15

where∆G is the free energy change accompanying eq iii. On
neglecting volume and entropy effects,13 eq 4 can be rewritten
asV ) -∆E/F, where∆E is the energy change of reaction iii.
Before proceeding further, it must be remarked that the energy
quantities must be normalized as per equivalent as pointed out
by Vijh16 and Diggle.5 For example, the energy of formation
per mole may be divided by the number of total valencies (either
cationic or anionic) participating in the compound to obtain the
energy of formation per equivalent.16 For LixMn2O4, a division
by 8 is required. For a convenient evaluation of∆E for the
reaction iii, the following steps may be considered:

Equation v- eq iv gives

Thus,

Hence, finally,

Equation 6 is the desired relation connecting the battery voltage
V and the energy change [∆Eh(x)].

∆Eh(x) can be deduced as follows, by breaking reaction iv
into elementary Born steps.

[The sublimation energy of lithium metal (1.65 eV), the
ionization potential of lithium (5.39 eV), and the fourth
ionization potential of manganese (52 eV) have been used in
the steps above].

Adding all the Born steps and the corresponding energies,
the net reaction and the net energy are given respectively as

and

Now the battery voltage may be computed using eq 7:

If the Madelung energyEM is a linear function ofx, then the
battery voltage will be independent ofx. However, in general
EM may have a nonlinear dependence onx in which case the
battery voltage itself may depend on stoichiometryx. Despite
the slight nonlinearity evident in Figure 1, the following linear
fit provides a good approximation toEM.

Using eqs 5 and 6, the battery voltage turns out to be 4.042
V, which agrees well with the experimental value of 4.1 V10,17

[see below, however, for the influence of certain additional
interactions]. This is the first time that a battery voltage has
been related to the Madelung energies of the electrode materials.
Owing to the near linearity of Figure 1, the voltage of LixMn2O4

is expected to depend only weakly on stoichiometry. However,
in general, the crystal energy may have severe nonlinearities in
x, in which case the battery voltage will be strongly dependent
upon the stoichiometry. Using quantum ab initio methods, Ceder
et al.13,14 have computed average intercalation voltages for
layered oxide systems. If the battery voltage is dependent upon
x, this average method cannot capture thex dependence of the
battery voltage. On the other hand, using the present method,

Figure 1. Madelung energyEM (in eV/formula unit) versus the
stoichiometryx.

νLi xMn2O4 + Li+ + e- f νLi x+(1/ν)Mn2O4

(at the cathode) (i)

Li f Li+ + e- (at the anode) (ii)

νLi xMn2O4 + Li f νLi x+(1/ν)Mn2O4 (overall cell reaction)

(iii)

V ) -∆G/F (4)

cell reaction energy change

xLi + Mn2O4 f Li xMn2O4 ∆Eh(x) (iv)

(x + 1/ν)Li + Mn2O4 f Li (x+1/ν)Mn2O4 ∆Eh(x + 1/ν) (v)

Li xMn2O4 + 1/νLi f Li (x+1/ν)Mn2O4

∆Eh(x + 1/ν) - ∆Eh(x) (vi)

∆E ) ν[∆Eh(x + 1/ν) - ∆Eh (x)]

) [∆Eh(x + 1/ν) - ∆G(x)]/(1/ν)

) d∆Eh(x)/dx (for a differential change inx) (5)

V ) -(1/F) d[∆Eh(x)]/dx] (6)

Born step energy change

xLi(s) f xLi(vap) f xLi + + xe- x(1.65+ 5.39) eV

Mn2O4(s) f 2Mn4+ + 4O2-(vap) EM(Mn2O4)

xMn4+ + xe- f xMn3+ -x(52) eV

xLi+ + (2 - x)Mn4+ + xMn3+ + 4O2- f

Li xMn2O4(s) EM(Li xMn2O4)

xLi(s) + Mn2O4 f Li xMn2O4

∆Eh(x) ) (1/8)[x(1.65+ 5.39)- x(52) - EM(Mn2O4) +
EM(Li xMn2O4)]

V ) -(1/F)[-5.62+ 0.125(dEM/dx)] (7)

EM ) 7.166(1.761x - 34.058) eV/formula unit
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one can compute battery voltages for any value ofx. In addition,
one is able to visualize how the battery voltage can have a
dependence on the stoichiometryx which is actually a measure
of the state of the charge of the battery, because the battery
voltage is linearly dependent upon the derivative of the total
energy with respect tox.

Though the dominant contribution to the energy of an ionic
crystal comes from the electrostatic or Madelung energy, a host
of other terms such as the short-range electron-electron
repulsion and the multipolar terms such as the dipole-dipole
and dipole-quadrupole interactions do contribute to the total
energy of the ionic crystal. However, the relative contributions
of these additional interactions are expected to be of the order
of 10% for the short-range electron-electron repulsion,∼1%
for the dipole-dipole, and 0.1% for the dipole-quadrupole
terms. We have computed the effects of the first two leading
terms (beyond the Madelung part) on the battery voltage. It is
found that though their contribution to the total energy can be
nearly 11%, their influence on the battery voltage is minimal.
On incorporating these corrections, the battery voltage becomes
3.9 V. Note further that the battery voltage is not directly
proportional to the computed energy but to the first derivative
of the energy with respect to stoichiometry. Hence, though the
additional interaction terms may contribute significantly to the
energy itself, they may not contribute so significantly to the
first derivative. However, for computing other properties of
crystals which depend directly on the energy itself, the additional
interactions neglected in this paper may become very important,
for example, in studying the relative stabilities of two similar
crystalline phases of the same material.

Conclusion

The class of ionic crystals finds applications in several areas
such as (i) ferroelectrics, (ii) piezoelectrics, (iii) electrochromic
devices, (iv) nonlinear optical materials, and (v) advanced
batteries and fuel cells. The ionic displacement in the crystal
underlies the basic phenomenon in ferroelectrics and piezoelec-
trics. Hence, it will be of interest to follow the electrostatic
energy of the crystal as a function of ionic displacements from
the normal positions. This can be implemented in our program
by varying the input parameters corresponding to the ionic
coordinates. The electrostatic environment in the crystal will
modify the local electronic energy levels at the sites of the guest
or dopant ions and, hence, modify the electrochromic properties.

In batteries and fuel cells, extensive material search is for
suitable electrode materials. Ionic oxides of varying structures
(layered, spinel) constitute an important class of electrode
materials. That the Madelung energy of these materials is
directly relatable to the open circuit voltages of batteries is
demonstrated in this paper. A method of computing the long-
range ion-ion interactions was developed in this paper for ionic
crystals of variable stoichiometry and valencies. An interesting
application was to battery voltage computation for LixMn2O4-
based lithium-ion batteries where the material stoichiometryx
varies continuously during battery charging and discharging.
In addition to stoichiometric changes, this method will be of
use in studying the effect of doping on Madelung energies.
Substitution of some of the host ions by hetero-ions is a widely
practiced way of tuning material properties for different ap-
plications.

The present approach also offers a basis for investigating
order-disorder transitions in nonstoichiometric and mixed-
valent materials such as LixMn2O4. In fact, a small voltage step
is observed nearx ) 0.5 on the voltage-versus-state-of-charge

plot for this system which is usually attributed to the order-
disorder transition, though detailed studies are not available.
We plan to probe it in our future work.
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Appendix

Computation of Eiref. Eiref is the energy of interaction of any
chosen reference ion with its own Bravais relatives (see the
following) and with other ions in the basis and their Bravais
relatives. Let

denote the atomic positions of theith ion in the basis andλ(i)
(i ) 1 f N) denote the effective charge at theith ion of the
basis. Shift the origin of the coordinates (0, 0, 0) so thatr iref )
(0, 0, 0). In this coordinate system

Now the interaction energyEiref can be written as

Bravais relatives of a given ion are here defined as the set of
ions generated by Bravais translations acting on the chosen ion.

In the above equations,l is the Bravais translation vector
given by

where the vectorsa, b, andc depend on the type of unit cell
chosen.

Using Ewald’s transformation, the summations appearing in
eq ii can be expressed as

where

r i ) [x(i), y(i), z(i)] i ) 1 f N

r i[x(i) - x(iref), y(i) - y(iref), z(i) - z(iref)] ) r i′

Eiref
) ∑

l*0

[λ2(iref)/|l|] + ∑
i*iref

N

∑
l

λ(iref) λ(i)/|l + r i′|

) λ2(iref)∑
l*0

1/|l| + λ(iref)∑
i*iref

N

λ(i)∑
l

1/|l + r i′| (i)

Eiref
) λ(iref)[(∑

l*0

λ(iref)/|l|) + (∑
i*iref

N

λ(i)∑
l

1/|l + r i′|)] (ii)

l ) l1a + l2b + l3c

∑
l*0

1/|l| ) ∑
g

f(g) + F(G) (iii)

∑
l

1/|l + r i′| ) ∑
g

exp(-ig‚r i′)f(g) + Fh(G, r i′) (iv)

f(g) ) (π/νc)(1/G2) exp [-(g2/4G2)]/(g2/4G2 ) (v)

F(G) ) ∑
l*0

(1/|l|) erfc{G‚|l|} - 2G/xπ (vi)

Fh(G, r i′) ) ∑
l

(1/|l + r i′|) erfc{G‚|l + r i′|} (vii)
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In the above equations,G is a variable scalar parameter which
is adjusted for fast convergence of the infinite sum,g is the
reciprocal lattice vector given byg ) hA + kB + lC where
vectorsA, B, andC are obtained from the vectorsa, b, andc
by the usual transformations.νc is the unit cell volume given
by νc ) |a × b‚c|.

Eiref may now be written as

The coefficient off(0) in the first summation appearing in the
eq viii is

due to the electroneutrality of the basis. Hence, the singularity
arising fromf(g) for g ) 0 is removed.
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