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Abstract

A systematic approach for the dynamic optimization problem statement to improve the dynamic optimality in electrochemical reactors is
presented in this paper. The formulation takes an account of the diffusion phenomenon in the electrode/electrolyte interface. To demonstrate the
present methodology, the optimal time-varying electrode potential for a coupled chemical–electrochemical reaction scheme, that maximizes
the production of the desired product in a batch electrochemical reactor with/without recirculation are determined. The dynamic optimization
problem statement, based upon this approach, is a nonlinear differential algebraic system, and its solution provides information about the
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ptimal policy. Optimal control policy at different conditions is evaluated using the best-known Pontryagin’s maximum principle. T
oint boundary value problem resulting from the application of the maximum principle is then solved using the control vector

echnique. These optimal time-varying profiles of electrode potential are then compared to the best uniform operation through t
mprovements of the performance index. The application of the proposed approach to two electrochemical systems, described
ifferential equations, shows that the existing electrochemical process control strategy could be improved considerably when th
ethod is incorporated.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The quest for optimal design and control of electrochemi-
al process plant has attracted much attention in recent years.
ptimal-control theory has been introduced several years ago

o calculate the dynamic temperature-control strategies for
hemical reactors to enhance reaction selectivity[1–3], but

t has not been extensively applied to electrochemical reac-
ors, although static optimization of electrochemical reactors
s a well-discussed topic. The traditional operating modes
f electrochemical reactor with constant voltage or constant
urrent are not always the best in a globally competitive elec-
rochemical industry; emphasis must be placed to understand

∗ Corresponding author. Tel.: +91 4565 227550; fax: +91 4565 227779.
E-mail addresses: vijayasekaranb@yahoo.com (B. Vijayasekaran),

ab50@rediffmail.com, basha@cecri.res.in (C.A. Basha).

the dynamic nature of electrochemical reactor enginee
problems. The previous contributions to the literature in
area were sparse also; they are all focused on formulatin
finding the solution for optimal control input trajectories
a batch electrochemical reactor without electrolyte reci
lation.

Bakshi and Fedkiw[4] first determined the time-varyin
electrode potential that maximizes the desired product
duced from a coupled, chemical–electrochemical reactio
quence occurring in a well-mixed batch reactor for a spec
reaction time. Fournier et al.[5] presented a methodology
dynamic optimization and optimal control of a batch e
trochemical reactor, where a series of two electrochem
reactions occurs. The sensitivity analysis of the optim
tion criterion and the main important steps that are w
to be analyzed prior to any on-line implementation, are
presented and discussed. Recently, Zhou et al.[6] followed

013-4686/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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the same problem statement and proposed a control vec-
tor parameterization approach using the Karhunen–Loéve
expansion.

The assumption of steady-state approximation for the
surface concentrations change with potential variation need
not be true. The rate of change of surface concentration
of the reactant shows a peak during the batch time; this
peak is important to achieve the desired conditions at the
end of batch process. This actuality can be evidenced by
performing the computation, taking in a step simultane-
ous variation of the rates of change of both surface con-
centration and the concentration in the bulk solution. This
effect plays an important role in many electrolytic cells
[7,8], such as plating and electrochemical synthesis. Some-
times, the concentrations of the reactive species at the
surface itself need to be maintained at specified condi-
tions, as in the case of porous electrodes. Thus, concept
of taking into account, the surface concentration varia-
tion for computing optimal control policy, will provide
new insight into the electrochemical power sources that in-
cludes fuel cells and super capacitors. This paper further
examines the effect of electrolyte recirculation through a
continuous stirred tank reactor on optimal electrode po-
tential profile. Scott[9] originally proposed the theoret-
ical basis of the method. More recently, Jayaraman and
Basha[10] applied the method for electrochemical reac-
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2. Mathematical analysis

Calculus of variations, coupled with maximum principle,
is used to calculate the optimal time-varying potential profile.
In general, a controlled dynamic optimization process can be
described by a set of ordinary differential equations.

ẋ = f (x(t), u(t)) (1)

wherex is a vector of state variables andu is a vector of con-
trol or decision variables. The functionsfi are known for any
values of the vector variablesx ∈ X andu ∈ U, and are further
assumed to be continuous, with respect to the set of variables
x andu, and continuously differentiable with respect to the
state variablesx for the given controlu(t) in the specified
interval 0≤ t ≤ tf . The initial values of the state variables are:

x(0) = x0 (2)

Solution of the system Eq.(1) is uniquely defined. Now, the
variational problem of interest is, for instance, to maximize
an integral functional:

J0 = J0[x(tf )] (3)

subject to the constraints Eqs.(1) and (2). For example,
J0 = CD(tf ) or in dimensionless formJ0 = x7(1) for the batch
r -
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w :
ion modeling in batch electrochemical reactors with/with
ecirculation.

The calculus of variation-based optimal control met
11–13]has been applied to determine extrema of the f
ionals. The newer techniques are variations on an old th
he variations can be appreciated much more if the th
s recalled. The continuous-parameterized technique[14] is
he one where a polynomial form approximates the opt
ontrol profile, and the state vector is treated as continu
he most frequently reported approximation continue
sing zeroth-order spline functions to approximate the

rol profiles. In parameterised–parameterized technique[15],
olynomial forms approximately both the state and con
ariables. Here, accurate approximations are obtained b
se of weighted residual methods, such as orthogona

ocation. These approaches have advantage of easy i
entation by making use of existing parametric optim

ion techniques. One of the practical disadvantages of
wo kinds of techniques is that the trial functions are cho
n a priority, based on one’s experience, and are arb

o a large extent. One of the adverse effects of the arbi
ess is that, many terms or coefficients may be necess
epresent the control profile to an acceptable accuracy
alculus of variation is a continuous-continuous techni
here both the state and the control solutions are con
us, which can obviously lead to the exact optimal solu

or the given problem. This solution is, however, obtai
t the expense of a long computational time, but it is no

ssue for the latest high-speed computation processing
ology.
eactor without recirculation; here,CD(tf ) is the final con
entration of the desired compound. Similarly, for batch r
or with electrolyte recirculation,J0 = x11(1). The constraine
ptimization problem (Eqs.(1)–(3)) can be transformed in
non-constrained optimization problem by defining an
ented performance index:

= J0 +
∫ tf

0

n∑
i= 1

γi[−ẋi + fi(x(t), u(t))] dt (4)

hereγi’s are the Lagrange multipliers—they are determi
ptimally by the computational method used. The resu
roblem (Eq.(4)) is then a standard unconstrained optim

ion problem, whose solution, if it exists, satisfies the
owing differential–algebraic system[16]. At this stage, it is
onvenient to introduce a new functionH called ‘Hamilto-
ian’ which is defined as:

=
n∑

i= 1

γifi(x(t), u(t)) (5)

ith the help ofH, we can write the system equations as

ẋ = ∂H

∂γ
, x(0) = x0,

γ̇ = −∂H

∂x
, γ(tf ) =

[
∂J0

∂x

]
tf

∂H

∂u
= 0

(6)
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3. Computational scheme

Optimal control profiles under different conditions are de-
termined by using Matlab. It can be seen that the boundary
conditions of the state and adjoint variables are split. This is
called a two-point boundary value problem and is not easy to
solve analytically. This necessitates numerical procedures if
all of the system equations are to be integrated in the same
direction, either forward or backward in time. The following
computational scheme is therefore followed to calculate the
optimal profiles:

(i) Assume an initial control policyu(t) = u0(t) over the
specified interval, 0≤ t ≤ tf .

(ii) Integrate the system (Eq.(1)) forward in time fromt = 0
to t = tf , using the initial value problem solverode45,
sincex(0) =x0 is known from Eq.(2).

(iii) Now with the computed trajectoryx(t), integrate the ad-
joint Eq. (6) backward in time fromt = tf to t = 0, us-
ing the boundary value problem solverbvp4c, asγ(tf )
is known from Eq.(6). To improve the solver per-
formance needed for some cases, default integration
properties in the solver are altered using the function
bvpset.

(iv) Computegi(t) from the following equation and obtain
an improved control vectorui+1(t).
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be operated in two modes, either without electrolyte recir-
culation or with the recirculation of electrolyte to enhance
mass transport processes. For the cases of both with and
without electrolyte recirculation through a continuous stirred
tank reactor, the reaction scheme is studied. The E, C–E
reaction sequence A−→E I −→C D, I −→E U [18] is sim-
ilar to that for the reduction of nitrobenzene (A) to the de-
sired productp-aminophenol (D) and the undesired product
aniline (U) through the intermediate phenylhydroxylamine
(I).

Simplifying assumptions are made about the transport and
kinetic processes to reduce computational effort while still
capturing the essential phenomena. In this manner, the prob-
lem statement focused on the improvements resulting from
application of the optimal-potential control. The important
assumptions in the analysis are as follows: (a) reactor op-
eration is in the steady state, and hence, start-up criteria
have been satisfied; (b) all the reaction steps have a first-
order concentration dependency; (c) the reactor is well-mixed
with mass-transfer resistance occurring by material diffusion
through a Nernst diffusion layer, as quantified with a mass-
transfer coefficient; (d) the capacitance of the double layer is
negligible and the current distribution is uniform; and (e) con-
stant volume conditions prevail and isothermal operation ap-
plies. Taking into account the dynamic concentration changes
at the electrode surface, the component material balances
a

H
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g(t) = ∂H

∂u
(t)

ui+1(t) = ui(t) + εgi(t)
(7)

(v) Repeat steps (ii) and (iii), untilg(t) becomes sufficientl
small in which caseu(t) converges to the optimal co
trol policy and further improvement inJ would not be
significant.

Stated in more specific terms, the method involves a
essive approximation in the control domain, utilizing
radient to compute a new control function in each itera
hen the control policy reaches the neighborhood of the

imal policy, the progress slows down due toε being a sma
onstant. Therefore, it is better to use varyingε, keeping i
mall in the beginning and gradually increasing it as the
rol policy is modified in each iteration.

. Batch electrochemical reactor without electrolyte
ecirculation

The complex reaction scheme used to describe the pr
pproach are coupled chemical–electrochemical reactio

ng place in a batch electrochemical reactor; here the
ant A is electrochemically reduced to a stable intermed
, which itself is a reactant for two competing parallel re
ions: a homogeneous chemical decomposition to the de
roduct D, or a further electrochemical reduction to an
esired product U. Batch electrochemical reactor[17] can
t

re:

dCb
A

dt
= −kmA a(Cb

A − Cs
A)

dCs
A

dt
= kmA a(Cb

A − Cs
A) − k10a e−α1fECs

A

dCb
I

dt
= kmI a(Cs

I − Cb
I ) − k3C

b
I

dCs
I

dt
= −kmI a(Cs

I − Cb
I ) + k10a e−α1fECs

A − k20a e−α2fECs
I

dCb
U

dt
= kmUa(Cs

U − Cb
U)

dCs
U

dt
= −kmUa(Cs

U − Cb
U) + k20a e−α2fECs

I

dCb
D

dt
= k3C

b
I

(8)

ere,Cb
i is the bulk concentration of the speciesi, Cs

i , is
he concentration at the electrode surface, which differs
he bulk concentrationCb

i , because of the presence of ma
ransfer resistance,kmi is the mass-transfer coefficient
peciesi; f = F/RT, α is the transfer coefficient, anda is the
pecific electrode area. The performance index assoc
ith this reactor–reaction system is:

0[E(t)] = CD(tf ) (9)

The objective is to determine the time-varying electr
otential that maximizes theCD(tf ), the concentration of th
esired product at the end of the specified batch periodtf . In
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a more general sense, we want to determine the controlE(t)
which maximize the functionalJ[E(t)], whereE(t) is some
function of potential. Eq.(8) can be written in dimensionless
form as:

ẋ1 = −k∗
mA

(x1 − x2)

ẋ2 = k∗
mA

(x1 − x2) − k∗
1x2

ẋ3 = k∗
mI

(x4 − x3) − k∗
3x3

ẋ4 = −k∗
mI

(x4 − x3) + k∗
1x2 − k∗

2x4

ẋ5 = k∗
mU

(x6 − x5)

ẋ6 = −k∗
mU

(x6 − x5) + k∗
2x4

ẋ7 = k∗
3x3

(10)

where x = C/Cb
A0 is the dimensionless concentration of

speciesi, k∗
i = akitf for i = 1 or 2,k∗

3 = k3tf , k∗
mi

= akmi tf is
the dimensionless mass-transfer coefficient of speciesi, ẋi =
dxi/dt∗ is the dimensionless reaction velocity, andt∗ = t/tf is
the dimensionless time. Only reactant A is present initially,
which results in the initial conditions:

x1(0) = 1.0, xi(0) = 0, where i = 2, 3, . . . , 7

the
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J

A
(x1 −

) + γ5

−ẋ7 +
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t he
E
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F can
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t vari-
a as

functionF.

γ̇1 = k∗
mA

(γ1 − γ2)

γ̇2 = (k∗
mA

+ k∗
1)γ2 − k∗

mA
γ1 − k∗

1γ4

γ̇3 = k∗
mI

(γ3 − γ4) + k∗
3(γ3 − γ7)

γ̇4 = k∗
2(γ4 − γ6) + k∗

mI
(γ4 − γ3)

γ̇5 = k∗
mU

(γ5 − γ6)

γ̇6 = k∗
mU

(γ6 − γ5)

γ̇7 = 0

(15)

E(t) = 1

(α1 − α2)f
ln

[
α1k10x2(γ4 − γ2)

α2k20x4(γ4 − γ6)

]
(16)

Thus, the system (Eq.(8)) is already given. The adjoint Eq.
(15)is derived. The Hamiltonian and the boundary conditions
for the system are:

H = γ1[−k∗
mA

(x1 − x2)] + γ2[k∗
mA

(x1 − x2) − k∗
1x2]

+ γ3[k∗
mI

(x4 − x3) − k∗
3x3] + γ4[−k∗

mI
(x4 − x3)

+ k∗
1x2 − k∗

2x4] + γ5[k∗
mU

(x6 − x5)]

+ γ6[−k∗
mU

(x6 − x5) + k∗
2x4] + γ7[k∗

3x3] (17)
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m 1 V
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To restrict the number of variables to be optimized,
lectrode potential is a priori mentioned between the lo
nd upper bounds.

min ≤ E(t) ≤ Emax (12)

Introducing the seven Lagrange multiplier functions,
or each of the system equations, the unconstrained m
ization function can be written as:

= x7(1) +
∫ tf

0




γ1(−ẋ1 − k∗
mA

(x1 − x2)) + γ2(−ẋ2 + k∗
m

+γ3(−ẋ3 + k∗
mI

(x4 − x3) − k∗
3x3)

+γ4(−ẋ4 − k∗
mI

(x4 − x3) + k∗
1x2 − k∗

2x4

+γ6(−ẋ6 − k∗
mU

(x6 − x5) + k∗
2x4) + γ7(

t should be noted that the multipliers are analogou
he impulse functions in the maximum principle. T
uler–Lagrange equation is expressed as:

d

dt

∂F

∂ẋi

− ∂F

∂xi

= 0, i = 1, . . . , n (14)

heren represents the number of dependent variables
represents the integrand function. The multiplier rule

ow be obtained by applying the Euler–Lagrange equa
o Eq.(13) for the seven state variables and one control
ble E(t) by considering the integrand in the equation
x2) − k∗
1x2)

(−ẋ5 + k∗
mU

(x6 − x5))

k∗
3x3)




dt (13)

he boundary conditions for the adjoint equations are
ained att = tf by applying the second of system Eq.(6), giv-
ngγ7(tf ) = 1.0 and other�’s equal to zero. The dimensionle
orm of the boundary conditions can be written as:

i(1) = 0, where i = 1, . . . , 6 and γ7(1) = 1.0 (18)

Now, starting with an initial guess of the assumed v
orized electrode potential, the iterative procedure as
ined in Section3 has been followed. The physical data u
or the computation are as follows:k∗

1 = 10−4, k∗
2 = 10−2,

∗
3 = 1.0, α1 = 0.693,α2 = 0.398, τ1 = 104.58,τ2 = 167.33

f = 3600 s,Emin =−1.0 V, Emax= 1.0 V, f = 38.68 V−1.
The converged state trajectories, as well as the co

rofile obtained, are shown in Figs.1a and2, respectively. To
llustrate the effect of mass-transfer resistance on the opt
otential profile,km is varied in the range of 1–105 cm h−1.
o show the importance and need of dynamic optimisa
he resultant concentration profiles over the batch perio
he best steady-potential control is also given inFig. 2b. The
est steady potential was found by numerically solving
aterial balance equations for potentials differing by 0.00
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Fig. 1. Optimal control policy obtained for the E–C, E reaction sequence
taking place in: (a) batch electrochemical reactor; (b) batch with electrolyte
recirculation processes. (�) km = 10000 cm s−1, (�) km = 1000 cm s−1, (�)
km = 100 cm s−1, (�) km = 1 cm s−1.

from 1 to−1 V and locating that corresponding to the max-
imum xD(tf ). The extent of the improvement in production
above the best steady control will, however, depend upon the
values ofk∗

i .
There are considerable differences in the optimal control

policies between the steady-state and unsteady-state problem
statement. Performance indices resulting from the present
approach are exact than the earlier studies on optimal con-
trol of batch electrochemical reactor due to the incorpora-
tion of concentration dynamics. This improvement points
out two major results. First, for some operating conditions
(km ≤ 103 cm h−1), the same performance index is achieved
with both operating modes of batch electrochemical reactor,
i.e. static and dynamic. It is then not necessary to operate at
optimal transient control profiles in that case. Under some
other operating conditions, however (km ≥ 103 cm h−1), the
improvements rise up when the optimal control policy is ac-
counted. But this improvement (maximum of 15%) is not

Fig. 2. Dimensionless concentration profiles obtained during the batch pe-
riod on applying the (a) best steady potential, and (b) optimal time-varying
potential in batch electrochemical reactor.

significant; emphasize need for different operating modes of
reactor. Thus, for batch operation where the chemical reaction
step is desired, the real benefits of using the optimal control
theory can be realized by the use of electrolyte recirculation
through a stirred tank chemical reactor.

In the simulation process, it is observed that when the
value ofkm is higher than 105 cm h−1, all the fourteen dif-
ferential equations become numerically unstable. Therefore,
it becomes difficult to solve those ODEs for the entire span
of batch process time. Moreover, the solutions obtained from
the ODEs violate the conservation of mass even nearer the
higher limit ofkm. To overcome these difficulties, the default
integration properties of the ODEs solver performance are in-
creased. The biggest startup cost occurs as the solver attempts
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to find a step-size appropriate to the scale of the problem. The
solvers for stiff problems are suggested with initial step-size
using the functionodeset. Initial step sets an upper bound on
the magnitude of the first step-size the solver tries. Though,
use of this option will slow down the computation in most
cases, it is necessary for ODE systems which are stiff.

5. Batch electrochemical reactor with circulation
through a stirred tank reactor

The previous analysis is limited with respect to the re-
duction in overall rate due to mass-transport restrictions. An
overall view of the physicochemical phenomena is that of a
series of events, i.e. mass transport–electrode reaction–mass
transport. The use of electrolyte recirculation in electrochem-
ical reactor operation is adopted for one or more of the rea-
sons, such as: (a) a high overall conversion of reactant,; (b)
high degree of flexibility regarding the amount of reactant
charge to the reactor; (c) when coupled electrochemical re-
action and slow chemical reaction occur, large holding vol-
umes are required to achieve the desired degree of chemical
transformation. The simplifying assumptions made regarding
kinetics, mechanisms and transport properties are the same as
in previous analysis. The model system is that of batch elec-
trochemical reactor with the recirculation of product stream
b actor
t en-
s type
o

H
v
a tank,
r ime-
v
t

J

Only reactant A is present att = 0, which results in the initial
conditions:

x1(0) = 1.0, xi(0) = 0, where i = 2, 3, . . . , 11

(21)

Introducing the Lagrange multipliers, the problem can be
transformed as an unconstrained optimization problem. Us-
ing the Euler–Lagrange equation, the multipliers can be ex-
pressed as:

γ̇1 = τ∗
1γ1 − τ∗

2γ3

γ̇2 = (k∗
mA

+ k∗
1)γ2 − k∗

mA
γ3 − k∗

1γ5

γ̇3 = (k∗
mA

+ τ∗
2)γ3 − k∗

mA
γ2 − τ∗

1γ1

γ̇4 = (k∗
3 + τ∗

1)γ4 − k∗
3γ10 − τ∗

2γ6

γ̇5 = (k∗
mI

+ k∗
2)γ5 − k∗

mI
γ6 − k∗

2γ8

γ̇6 = −τ∗
1γ4 − k∗

mγ5 + (k∗
m + τ∗

2 + k∗
3)γ6 − k∗

3γ11

γ̇7 = τ∗
1γ7 − τ∗

2γ9

γ̇8 = k∗
mU

γ8 − k∗
mU

γ9

γ̇9 = −τ∗
1γ7 − k∗

mU
γ8 + (k∗

mU
+ τ∗

2)γ9

γ̇10 = τ∗
1γ10 − τ∗

2γ11

γ̇11 = −τ∗
1γ10 + τ∗

2γ11

(22)
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ack to the reactor through a continuous stirred tank re
o achieve a high overall conversion of reactant. The dim
ionless component material balance equations for this
f system are:

ẋ1 = τ∗
1(x3 − x1)

ẋ2 = k∗
mA

(x3 − x2) − k∗
1x2

ẋ3 = −k∗
mA

(x3 − x2) + τ∗
2(x1 − x3)

ẋ4 = −k∗
3x4 + τ∗

1(x6 − x4)

ẋ5 = k∗
1x2 − k∗

2x5 − k∗
mI

(x5 − x6)

ẋ6 = k∗
mI

(x5 − x6) − k∗
3x6 + τ∗

2(x4 − x6)

ẋ7 = τ∗
1(x9 − x7)

ẋ8 = −k∗
mU

(x8 − x9) + k∗
2x5

ẋ9 = k∗
mU

(x8 − x9) + τ∗
2(x7 − x9)

ẋ10 = τ∗
1(x11 − x10) + k∗

3x4

ẋ11 = τ∗
2(x10 − x11) + k∗

3x6

(19)

ere τ∗
1 = tf/τ1, τ∗

2 = tf/τ2, τ1 = Vm/q, τ2 = VR/q; q is the
olumetric flow rate of the reticulating electrolyte,VR andVm
re the volumes of electrochemical reactor and stirred
espectively. The objective here is to determine optimal t
arying electrode potential that maximizesCD(tf ), subject to
he listed material balance equations:

0[E(t)] = x11(1) (20)
ith boundary conditions:

i(1) = 0, where i = 1, . . . , 10 and γ11(1) = 1.0

(23)

he control variable is expressed in terms of state and ad
ariables as:

(t) = 1

(α1 − α2)f
ln

[
α1k10x2(γ2 − γ5)

α2k20x5(γ8 − γ5)

]
(24)

he Hamiltonian derivative of the system is:

∂H

∂E
= α1k

∗
1fx2(γ2 − γ5) − α2k

∗
2fx5(γ8 − γ5) (25)

Fig. 1b shows the optimal electrode potential–time pro
btained by the above computational method.Fig. 3a and 3b
ompares the concentrations of the reactant and produc
ained by dynamic optimization with the traditional opera
ode of batch electrochemical reactors, i.e. constant vo

t is clear that the concentration of desired product at the
f batch time under different mass-transport conditions
uperior in case of electrolyte recirculation.Table 1lists the
esultant dimensionless concentrations of the desired an
esired species at the end of batch period for all the four c
f batch—batch with recirculation and steady control of th
ector system.

The greatest production of the desired product is obta
y the optimal potential control of batch electrochemica
ctor, with recirculation of electrolyte through a continuou
tirred tank reactor. Regardless of the value ofkm, this system
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Table 1
Dimensionless concentrations of the desired and undesired products at the end of the batch period for the best steady potential and optimal time-varying potential
operations in Batch and Batch with electrolyte recirculation processes at various mass transport limits

km Batch electrochemical reactor Batch with electrolyte recirculation

Static control Dynamic control Static control Dynamic control

xD xU xD xU xD xU xD xU

10000 0.47 0.45 0.58 0.25 0.47 0.43 0.63 0.23
1000 0.30 0.42 0.51 0.16 0.31 0.37 0.54 0.13
100 0.25 0.31 0.47 0.15 0.32 0.34 0.51 0.12

1 0.18 0.24 0.40 0.12 0.19 0.28 0.48 0.10

produces the concentration of D always greater than that of U.
It is because of the reactor configuration and time-varying po-
tential that favors the decomposition of the intermediate to the
desired product while keeping the undesired electro reduction
of I to U, low. Of course, the same trend is also aimed in batch
electrochemical reactor without electrolyte recirculation

F
r
p

through the use of optimal control policy. But the production
is lowered due to the continuous growth of diffusion layer.
Thus, the electron-transfer step is more pronounced than the
chemical step. In contrast, under steady-potential control, it is
not possible to restrict the formation of U, and its concentra-
tion continues to increase by consuming I, which otherwise
could have been used to form the desired product D. Obvi-
ously, the production rate of the desired product D decreases
for all the cases with increasing mass-transfer resistance.

It is only the electrochemical reactor, where we can have
a direct control over the reaction velocities, unlike chemical
kinetics. Even though, the analogous optimum temperature
progression in chemical reactor can have some control over
reaction rate, it has been recognized that reaction rates and
selectivities control in ordinary chemical reactors are not sig-
nificantly affected as in electrochemical industry. Because the
large thermal inertia associated with the reactor wall, catalyst
support, and solvent can notably dampen temperature fluctu-
ations. But the potential or current modulation is particularly
sensitive to electro-organic reactions.Fig. 4 illustrates the
ig. 3. Dimensionless concentration profiles obtained during the batch pe-
iod on applying the (a) best steady potential, and (b) optimal time-varying
otential in batch electrochemical reactor with electrolyte recirculation.

F action
r
o nce
o (
r

ig. 4. Representation of the general shape of the electrochemical re
ate curve for E–C, E reaction mechanism in the two reactor systems. (♦) Rate
f disappearance of the reactant A; (�) rate of appearance and disappeara
f the intermediate I; (�) rate of appearance of the undesired product U;©)
ate of appearance of the desired product D.
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qualitative nature of the two reaction velocities for the E–C, E
reaction scheme under kinetic control. This representation is
very much important, as the decision of choosing the best re-
actor system solely depends on the reaction rate curve. Also,
it is clear from the figure, that the rate of formation of D is su-
perior for the case of reactor with recirculation system. Based
on the nature of the decomposition rate of the reactant A, the
other possible reactor system for the reaction scheme can be
decided and worked out for the maximum production of D.

The computational difficulty becomes even more pro-
nounced when reactor with recirculation system is consid-
ered. Matlab numerical IVP and BVP solvers control the
errors by means of the options RelTol, AbsTol and Norm-
Control. At each step, the solver makes a truncation and/or
discretization error that depends on the method and the length
of the step. The cumulative effect of these errors depends
on the stability of the ODEs near the solution. If the given
system of ODEs is stable near the solution (solutions with
nearby initial data do not diverge from one another), errors
are not amplified, but if the ODEs are unstable near the so-
lution (solutions with nearby initial data diverge), errors are
amplified. The default error tolerance property, 1e−3, corre-
sponds to 0.1% accuracy. To achieve the desired accuracy in
convergence of assumed profileE(t), this error tolerance in
solver performance is adjusted to some extent, without sacri-
ficing much accuracy in the exact solution of the ODEs. But
t nd,
t can
b ssive
s -
n s as
u ained
c later
m ction
o in the
g

ribe
t ology
c l strat
e ow-
e neral
a ysis
o ,
t e the
r elec-
t that
c it is
a esses
w al
t s.

6

vari-
a sys-

tems, and hence, it is logical to strive for an increase in re-
actant conversion to the desired product via precise optimal
control policy. In this manner, this paper addresses a dynamic
optimization approach, that takes into account, the surface
concentration changes during the electrochemical process.
In order to obtain solutions with adequate accuracy, efficient
ODEs solvers are used in the solution of the state and adjoint
system equations. These results are hopeful and put forward
the use of this methodology to other reactor–reaction systems.
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