
 

1023-1935/05/4104-  © 2005 

 

åÄIä “Nauka

 

/Interperiodica”0421

 

Russian Journal of Electrochemistry, Vol. 41, No. 4, 2005, pp. 421–438. From Elektrokhimiya, Vol. 41, No. 4, 2005, pp. 482–500.
Original English Text Copyright © 2005 by Sivakumar, Basha.

 

1. INTRODUCTION

Voltammetry techniques have grown rapidly in pop-
ularity not only as means of obtaining a quick electro-
chemical spectrum of charge transfer systems but also
as method for detailed examination of reaction mecha-
nisms. For simple electron transfer processes, without
coupled chemical reactions, direct solutions were
obtained very early by Randles [1] and Sevick [2]. For
electron transfer processes coupled with preceding,
parallel or succeeding chemical reactions, analytical
solutions are much more difficult to arrive at. In these
cases, numerical integration approach was adopted [3–5].

Digital simulation has become one of the most pow-
erful methods for the study of electrochemical prob-
lems. A fast quasi-explicit finite-difference method for
the simulation of cyclic voltammetry of electrochemi-
cal systems comprising heterogeneous and homoge-
neous kinetics was developed [6–8]. Explicit finite-dif-
ference methods are being widely used, and detailed
descriptions are also available in the literature [9–12].
Further refinements in the explicit finite-difference
approach [13–15] are also being reported from time to
time. Explicit and implicit finite-difference method
[16–19] has been introduced. Rudolph and his cowork-
ers have introduced a fast implicit finite-difference
method algorithm [20] and CV Simulator software

based on this approach [21]. Reinmuth has described a
method [22] for writing series solutions for the numer-
ical integral equations of the types as described in [4].
Nicholson and Shain have found difficulty in summing
up these highly divergent series solutions. Subsequent
efforts for finding analytical expressions for the current
function are confined to charge transfer process without
coupled chemical reactions, i.e., reversible and irre-
versible charge transfer reactions. These efforts include
modification of Reinmuth power series approach
[23, 24], orthogonal collocation procedure [25, 26],
and Gaussian quadrature method [27]. Basha and San-
karnarayanan have evaluated the current function val-
ues for the first two cases, namely reversible charge
transfer and irreversible charge transfer [28]. Recently,
Mocak [29] reports in calculating the mechanisms
reported in [4] with excellent accuracy and over a much
wider potential range. However, these calculations
were laborious and rather slow in the problematic
potential region beyond the peak, even when using a
relatively powerful computer. Further, it was also demon-
strated by Mocak and Bond [30] using MATHEMATICA
software the analytical solutions to be achieved for the
current–potential response in linear sweep voltamme-
try using exponential infinite series for the cases of sim-
ple reversible charge transfer as well as catalytic reac-
tions with reversible charge transfer. In these cases, the
problems with divergence or slow convergence of the
respective series can be overcome and a considerable
gain both in accuracy of computation as well as aug-
menting the potential range can be achieved when using
polylogarithm or Lerch functions.

 

Evaluation of the Current Function 
in Linear Sweep Voltammetry by Pade Approximation 

and Epsilon Convergence* 

 

S. Sivakumar

 

z

 

 and C. A. Basha

 

Central Electrochemical Research Institute, 
Karaikudi, 630006 India

 

Received June 28, 2004

 

Abstract

 

—Two procedures, viz., the epsilon convergence algorithm and Pade approximation scheme, are used
to evaluate the current function values, graphical representation of the output, and verification of the model
using existing data are carried out. For theoretical simulations of voltammograms, closed form of rational
expressions using Pade approximant for the response of various reactions schemes involving soluble reactant
and product, as well as coupled chemical process to an imposed linear scans were derived. Similarly, it was
demonstrated epsilon convergence as an alternative procedure is much easier and elegant to use by an electroan-
alytical chemist with extreme ease.

 

Key words

 

: Pade approximant, epsilon convergence, linear sweep voltammetry, current function, infinite series

 

* This article was submitted by the authors in English.

 

z

 

 Corresponding author, e-mail: cecrisivakumar@rediffmail.com



 

422

 

RUSSIAN JOURNAL OF ELECTROCHEMISTRY

 

      

 

Vol. 41

 

      

 

No. 4

 

      

 

2005

 

SIVAKUMAR, BASHA

 

Continuous search for obtaining analytical solutions
for the current potential relations are being made. The
diagnostic criteria for distinguishing several types of
electron transfer scheme are essentially based upon the
compilation of the current function values dealt with
eight common cases at various electrochemical process
by Nicholson and Shain [4].

In the present work, two equivalent procedures, viz.
(

 

i

 

) the epsilon convergence algorithm [31] for the accel-
eration of convergence of the original series and
(

 

ii

 

) Pade approximation [31], using only the first few
terms of the given series are found to be a very efficient
mathematical apparatus for summing up highly diver-
gent or slowly converging series solutions. The aim of
this work is to demonstrate the efficient and straightfor-
ward use of the series solution presented by Nicholson
and Shain [4] in the epsilon convergence algorithm and
Pade approximation to compute the results of all the
eight common cases independently and present them in
the tables along with the data of Nicholson and Shain
[4] for comparison.

Epsilon algorithm and Pade approximation proce-
dures are briefly explained in Sections 2 and 3, respec-
tively. For stationary electrode polarography, various
solutions with coupled chemical reactions are
described briefly in Section 4. Finally, discussion and
conclusion are made in Section 5.

2. EPSILON ALGORITHM

The results of the analysis of theoretical models or
experimental fits of several problems of physical inter-
est may be expressed as an infinite power series of the
form

 

(1)

 

This series may or may not be rapidly convergent and
is frequently divergent for some finite value of 

 

x

 

. When
equation (1) is divergent, the “sum” termed the anti-
limit by Shanks [8], and is generally depends upon the
value of the function most naturally associated with the
series. When one resorts to the summation of a slowly
convergent (or an alternating or a divergent) series,
another difficulty encountered in this process is in get-
ting information about the values of successive coeffi-
cients, and excessive computer time may be needed
even to obtain these estimates. To circumvent this, one
normally resorts to efficient extrapolation techniques,
that is, with the knowledge of the partial sums of the
series, the “total sum” can be approximately derived.
The 

 

m

 

th partial sum of equation (1) is defined as
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For a reasonably smooth, regular types of (conver-
gent or divergent) series, such as those arising from
physical problems, an excellent analytical or numerical
approximation to 
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 may be obtained from its first (or
any sequential) 
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 + 1 partial sums by applying the
epsilon algorithm to them. This nonlinear sequence-to-
sequence transformation is given by
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 may conve-
niently be arranged in a lozenge diagram (for 
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 = 5, the
lozenge diagram is given below in (4)). The subscripts
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 of  denote the column, and the superscripts 

 

m

 

denote the progression down the column. The first col-

umn  is defined to be zero, and the second column

 is the given sequence (partial sum).
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The even column of 

 

ε

 

-diagram above show the con-
verging sequence gradually, and the entry in the fur-
thermost even column denotes the required final limit.

Then, the quantities 

 

, , …

 

 are successively
better and better approximations to 
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. We see
Appendix 1, by example, that the 

 

ε

 

-algorithm used to
sum divergent series. The computation of sequence-to-
sequence transformation by 

 

ε

 

-algorithm to the series
solution of current function of various schemes dis-
cussed [4] in their work is carried and presented in Sec-
tion 4. The next section is devoted to understand the
power series representation of function, by the descrip-
tion of Pade approximant technique.

3. PADE APPROXIMATION

The Pade approximant represents a function by the
ratio of two polynomials. The coefficient of the power
occurring in the polynomial is determined by the coef-
ficients in Taylor series expansion of the function if the
power series expansion is not given. Exploitation of this
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simple idea and its extension has led to many insights.
To define more explicitly, a Pade approximant is that
rational function whose power series expansion agrees
with a given power series to the highest possible order.
If the rational function is,

 

(5)

 

Then, [

 

L

 

/

 

M

 

] is said to be a Pade approximant to the infi-
nite series of the form (1), i.e.,

 

(6)

 

The 

 

L

 

 + 
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, 
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, …

 

B

 

M

 

 are such that, in the Pade approximant
[L/M] in powers of x, agree with the coefficients a0, a1,
a2, … of F(x) up to order L + M. To calculate A’s and
B’s, equate (5) and (6), multiply both by the denomina-
tor of equation (5), and equate all powers of x that have
either A’s or B’s in their coefficients; then, we have

(7)

(8)

(9)

Consider the typical expression for the expression
given in (6). Equating the series with a [5/6] Pade
approximant in a rational polynomial as F(x) = [5/6],
we see that

(10)

or

(11)

By matching the coefficient of x6 to x11, we get a set
of linear equations for B’s in matrix form as
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We then solve for B’s as

(13)

The coefficients A0, A1, A2, A3, A4, and A5 are then
obtained by equating the constant terms and the coeffi-
cients of x, x2, x3, x4, and x5 in (11) to give

(14)

In Appendix 2, we also illustrate the calculations
explicitly through [5/6] Pade approximant for an infi-
nite series for the case of catalytic reaction with irre-
versible charge transfer.

4. PROBLEMS AND ANALYSIS

The linear potential sweep technique has grown rap-
idly in popularity not only as a means of obtaining a
quick electrochemical spectrum of a charge transfer
system but also as a method of examination of reaction
mechanisms. These analyses have been redescribed by
number of authors including the very thorough account
by Nicholson and Shain [4]. The essential features of
their treatment are reproduced here in the following
sections along with a rational expression for current
function.

The values for current function vs. potential are tab-
ulated which are numerically evaluated by epsilon
algorithm and Pade approximant together with values
of Nicholson and Shain [4] for comparison.
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4.1. Reversible Charge Transfer (Er-Scheme)

For the simple reversible electron transfer reaction

(15)

taking place at a plane electrode, the diffusion equa-
tions are written as

(16)

(17)

and they are subject to the following initial and bound-
ary conditions:

(18)

t ≥ 0,  x  ∞ : cO   : cR  (19)

O ne R⇔+

∂cO

∂t
-------- DO
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-----------=
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∂x2
----------=

t 0, x 0 : cO≥ cO
b  : cR cR

b= = =

cO
b cR

b

(20)

(21)

for which the current response is evaluated by [32]:

(22)

where a = nFv/RT and χ(at) is the current function
which refers to the dimensionless part of the current
response in the voltammetric technique. The expression
for the current function χ(at) as an infinite series for
this scheme is given by [4]:

(23)

The current function represented by above equation
(23) is converted to a useful rational function using the
Pade approximation, in [5/6] approximant, and is
expressed as

t 0, x≥ 0 : DO

∂cO

∂x
-------- DR

∂cR

∂x
--------– i

nFA
-----------= = =

cO

cR
----- nF/RT( ) E E0–( )[ ]exp=

i nFAcO
b πDOaχ at( ),=

πχ at( ) 1–( ) j 1+ j
jnF–
RT

------------ E E1/2–( ) .exp
j 1=

∞
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(24)πχ at( ) 1.7726 0.9557x 0.1329x2 0.0136x3– 0.0017x4– 0.0x5+ + +( )
1 3.1868x 3.7306x2 1.8889x3 0.3337x4 0.01684x5– 0.0055x6–+ + + +( )

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

where x = exp . Once again, using

the procedure adopted for epsilon algorithm with the

jnF–
RT

------------ E E1/2–( ) value of N as 9, the current function is computed. The
values of current obtained for various potential values
obtained by epsilon algorithm and Pade approximant

Table 1.  Current function ( (at)) values with a [5/6] Pade approximation sequence and its coefficients for the reversible
charge transfer scheme

Potential,
mV

Current functions (at) from
Potential,

mV

Current functions (at) from

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

120 0.0092 0.0092 0.009 10 0.3283 0.3283 0.328

100 0.0198 0.0198 0.02 0 0.3801 0.3801 0.38

80 0.0418 0.0418 0.042 –10 0.4188 0.4188 0.418

60 0.0850 0.0850 0.084 –20 0.4408 0.4408 0.441

50 0.1183 0.1183 0.117 –30 0.4447 0.4461 0.446

40 0.1610 0.1610 0.16 –40 0.4357 0.4376 0.438

30 0.2125 0.2125 0.211 –50 0.4099 0.4196 0.421

20 0.2701 0.2701 0.269 –60 0.3470 0.3952 0.399

Note: Reaction: O + ne  R; series solution: (at) = , where a = nFv/RT; potential scale:

(E – E1/2)n; in epsilon convergence algorithm: N = 9; current expression using [5/6] Pade approximant: (at) =

πχ

πχ πχ

πχ 1–( ) j 1+
j
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------------ E E1/2–( )exp
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∞

∑
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2

0.0136x
3

– 0.0017x
4

– 0.0x
5

+ + +( )

1 3.1868x 3.7306x
2

1.8889x
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5

– 0.0055x
6

–+ + + +( )
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
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are tabulated in Table 1 with the Nicholson and Shain
[4]. And also the graph for the current vs. potential for
the above two procedures are drawn with the current vs.
potential values represented by Nicholson and Shain in
his paper [4] in Fig. 1.

4.2. Irreversible Charge Transfer (Eir-Scheme)

For an irreversible electron transfer reaction

O + ne  R (25)

taking place at a plane electrode, the diffusion equation
is written as

(26)

and is subject to the following initial and boundary con-
ditions:

(27)

t ≥ 0,  x  ∞ : cO  (28)

(29)

where kf = . Using the above boundary condi-
tions, the current is given by [32]:

(30)

where b = αnaFv/RT. The expression for the current
function χ(at) as an infinite series for this irreversible
charge transfer reaction is given by [4]:

(31)

For numerical evaluation of the above series, current
function is transformed to [5/6] Pade approximation.
Then, the current function is expressed as

(32)

where 

x = exp .

Using the procedure adopted for epsilon algorithm, for
the value of N = 9, once again the equation (31) is eval-
uated. The values of current obtained for various poten-
tial values obtained by epsilon algorithm and Pade
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Fig. 1. Graph of current vs. potential using Pade approximation and epsilon algorithm procedures compared with values from
Nicholson and Shain for the simple reversible charge transfer scheme.
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approximant are tabulated in Table 2 along with the
Nicholson and Shain [4]. And also the graph for the cur-
rent vs. potential for the above two procedures are
drawn with the current vs. potential values represented
by Nicholson and Shain in his paper [4] in Fig. 2.

4.3. Chemical Reaction Preceding a Reversible Charge 
Transfer (CrEr-Scheme)

The chemical/electrochemical mechanism where
the reversible electron transfer process preceding a
reversible chemical reaction is written as

(33)

taking place at a plane electrode. The corresponding
diffusion equations are

(34)

(35)

(36)

and are subject to the following initial and boundary
conditions:

(37)

(38)

(39)

From the boundary conditions, current is evaluated and
given by

(40)

The explicit expression for the current function χ(at) as
an infinite series for this scheme is given by [4]:

(41)

For numerical evaluation of the current function, the
above expression is changed to the [5/6] Pade approxi-
mant and which is written as

(42)

where x = exp . For

evaluation of current function, the value of N = 9 is
adopted in the procedure of epsilon algorithm. The val-
ues of current are obtained for various potential values
obtained by epsilon algorithm and Pade approximant
together with the Nicholson and Shain [4] are tabulated
in Table 3. And also the graph for the current vs. poten-
tial for the above two procedures are drawn with the
current vs. potential values represented by Nicholson
and Shain in his paper [4] in Fig. 3.

4.4. Chemical Reaction Preceding an Irreversible 
Charge Transfer (CrEir-Scheme)

The CE mechanism where the electron transfer pro-
cess preceding the reversible chemical reaction is con-
sidered to be irreversible is written as

(43)

takes place at a plane electrode, the diffusion equations are

(44)

(45)

the appropriate initial and boundary conditions for this
scheme are as follows:

(46)

(47)

(48)
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From the above boundary conditions, current is evalu-
ated and given by

(49)

The explicit expression for the current function χ(bt) as
an infinite series for this scheme is given by [4]:

i nFAcO
b πDOaχ bt( ).=

(50)

πχ bt( )

=  1–( ) j 1+ π( ) j

j 1–( )!
---------------------- 1 i

K 1/b( ) i+
------------------------------+ 

 
i 1=

j 1–

∏
j 1=

∞

∑

×
jαnaF–
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------------------- E E0– V+( ) ,exp
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Nicholson and Shain [4]

Fig. 2. Graph of current vs. potential using Pade approximation and epsilon algorithm procedures compared with values from
Nicholson and Shain for the simple irreversible charge transfer scheme.
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Fig. 3. Graph of current vs. potential using Pade approximation and epsilon algorithm procedures compared with values from
Nicholson and Shain for the scheme of chemical reaction preceding a reversible charge transfer.
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Table 3.  Current function ( (at)) values with a [5/6] Pade approximation sequence and its coefficients for the scheme of
chemical reaction preceding a reversible charge transfer

Potential,
mV

Current functions (at) from
Potential,

mV

Current functions (at) from

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

120 0.0092 0.0092 0.009 10 0.3283 0.3283 0.328

100 0.0198 0.0198 0.02 0 0.3801 0.3801 0.38

80 0.0418 0.0418 0.042 –10 0.4188 0.4188 0.418

60 0.0850 0.0850 0.084 –20 0.4408 0.4408 0.441

50 0.1183 0.1183 0.117 –30 0.4447 0.4461 0.446

40 0.1610 0.1610 0.16 –40 0.4357 0.4376 0.438

30 0.2125 0.2125 0.211 –50 0.4099 0.4196 0.421

20 0.2701 0.2701 0.269 –60 0.3470 0.3952 0.399

Note: Reaction: Z  O, O + ne  R; series solution: (at) = 

× ; potential scale: (E – E1/2)n – (RT/F)ln(K/K + 1); in the case of epsilon convergence algo-

rithm: N = 9, current expression using [5/6] Pade approximant:

(at) = 

πχ

πχ πχ

kf

kb
πχ 1–( ) j 1+

j 1 i

K 1/a( ) i+
------------------------------+ 

 
i 1=

j 1–

∏
j 1=

∞

∑

jnF–
RT

------------ E E1/2–
RT
nF
------- K

K 1+
------------- 

 ln– 
 exp

πχ 1.7726 0.9557x 0.1328x
2

0.0136x
3

– 0.0018x
4

– 0.0000002x
5

–+ +

1 3.1868x 3.7305x
2

1.8889x
3

0.3337x
4

0.0168x
5

– 0.0055x
6

–+ + + +
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

Table 2.  Current function ( (bt)) values with a [5/6] Pade approximation sequence and its coefficients for the irreversible
charge transfer scheme

Potential,
mV

Current functions (bt) from
Potential,

mV

Current functions (bt) from

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

120 0.0163 0.0163 0.016 10 0.4620 0.4620 0.462

100 0.0349 0.0349 0.035 0 0.4918 0.4918 0.492

80 0.0729 0.0729 0.073 –10 0.4930 0.4930 0.493

60 0.1454 0.1454 0.145 –20 0.4722 0.4725 0.472

50 0.1991 0.1991 0.199 –30 0.4400 0.4419 0.441

40 0.2643 0.2643 0.264 –40 0.4032 0.4129 0.406

30 0.3365 0.3365 0.337 –50 0.3457 0.3961 0.374

20 0.4067 0.4067 0.406

Note: Reaction: O + ne  R; series solution: (bt) = ; potential

scale: (E – E0)αna + (RT/F)ln( /ks); in epsilon convergence algorithm: N = 9; current expression using [5/6] Pade approxi-

mant: (bt) = 

πχ

πχ πχ

k πχ 1–( ) j 1+ π( )
j

j 1–( )!
----------------------

jαnaF–

RT
------------------- E E

0
–

RT
αnaF
-------------

πD0b

ks
------------------

 
 
 

ln+
 
 
 

exp
j 1=

∞

∑

πD0b

πχ 1.8096 1.1664x 0.3904x
2

0.0786x
3

0.0056x
4

0.0000007x
5

+ + + + +

1 2.7935x 3.3881x
2

2.2931x
3

0.9181x
4

0.2075x
5

0.0208x
6

+ + + + + +
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
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where V =  –  and
b = αnaFv/RT. For numerical evaluation of the current
function, the above expression is changed to the [5/6]
Pade approximant and which is written as

(51)

where x = exp . For evaluation

of current function, the value of N = 9 is adopted in the
procedure of epsilon algorithm. The values of current
obtained for various potential values obtained by epsi-
lon algorithm and Pade approximant with the Nichol-
son and Shain [4] are tabulated in Table 4. And also the
graph for the current vs. potential for the above two
procedures are drawn with the current vs. potential val-
ues represented by Nicholson and Shain in his paper [4]
in Fig. 4.

4.5. Reversible Chemical Reaction Succeeding 
a Reversible Charge Transfer (ErCr)

The electrochemical/chemical mechanism where
the electron transfer process preceding a reversible
chemical reaction is considered to be reversible and is
written as

(52)

The diffusion equations for a plane electrode are

(53)

(54)

(55)

and are subject to the following initial and boundary
conditions:

(56)

RT
αnaF
------------- πDb

ks
--------------- 

 ln
RT

αnaF
------------- K

K 1+
------------- 

 ln

πχ bt( ) 1.8096 1.1664x 0.3904x2 0.0786x3 0.0056x4 0.0000007x5+ + + + +

1 2.7935x 3.3881x2 2.2931x3 0.9181x4 0.2075x5 0.0208x6+ + + + + +
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=

jαnaF–
RT

------------------- E E0– V+( ) O ne R, R Y.⇔⇔+
kf

kb

∂cO

∂t
-------- DO

∂2cO

∂x2
-----------=

∂cR

∂t
-------- DR

∂2cR

∂x2
---------- kbcY kfcR–+=

∂cY

∂t
-------- DY

∂2cY

∂x2
----------- kbcY kfcR+ +=

t = 0, x 0 : cY/cR
b≥  = K  : cR = cR

b , cO = cO
b

Table 4.  Current function ( (bt)) values with a [5/6] Pade approximation sequence and its coefficients for the scheme of
chemical reaction preceding an irreversible charge transfer

Potential,
mV

Current functions (bt) from
Potential,

mV

Current functions (bt) from

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

120 0.0163 0.0163 0.016 10 0.4620 0.4423 0.414

100 0.0349 0.0347 0.035 0 0.4918 0.4706 0.44

80 0.0729 0.0719 0.07 –10 0.4930 0.4739 0.443

60 0.1454 0.1414 0.14 –20 0.4722 0.4580 0.43

50 0.1991 0.1919 0.19 –30 0.4400 0.4319 0.407

40 0.2643 0.2521 0.248 –40 0.4032 0.4035 0.381

30 0.3365 0.3259 0.312 –50 0.3457 0.3784 0.355

20 0.4067 0.3912 0.37 –60 0.1383 0.3595 0.333

Note: Reaction: Z  O, O + ne  R; series solution: (bt) = 

× , where V = ; potential scale: –(E – E0)αna – (RT/F)ln( /ks)

+ (RT/F)ln(K/(K + 1)); in case of epsilon convergence algorithm: N = 9; current expression using [5/6] Pade approximant: (bt)

= 

πχ

πχ πχ

kf

kb
πχ 1–( ) j 1+ π( )

j

j 1–( )!
---------------------- 1 i

K 1/b( ) i+
------------------------------+ 

 
i 1=

j 1–

∏
j 1=

∞

∑

jαnaF–

RT
------------------- E E

0
– V+( )exp

RT
αnaF
------------- πDb

ks
--------------- 

 ln
RT

αnaF
------------- K

K 1+
------------- 

 ln– πDb

πχ

1.8096 1.1664x 0.3904x
2

0.0786x
3

0.0056x
4

0.0000007x
5

+ + + + +

1 2.7935x 3.3881x
2

2.2931x
3

0.9181x
4

0.2075x
5

0.0208x
6

+ + + + + +
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
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(57)

(58)

From the boundary conditions, current is evaluated and
given by

(59)

The explicit expression for the current function χ(at) as
an infinite series for this scheme is given by [4]:

(60)

The current function represented by above equation
(60) is converted to a useful rational function using the
Pade approximation, in [5/6] approximant, and is
expressed as

(61)

where x = exp . For

evaluation of current function, the value of N = 9 is
adopted in the procedure of epsilon algorithm. The val-
ues of current obtained for various potential values
obtained by epsilon algorithm and Pade approximant
with the Nicholson and Shain [4] are tabulated in Table
5. And also the graph for the current vs. potential for the
above two procedures are drawn with the current vs.
potential values represented by Nicholson and Shain in
his paper [4] in Fig. 5.

4.6. Irreversible Chemical Reaction Succeeding 
a Reversible Charge Transfer (ErCir-Scheme)

The EC mechanism where the reversible electron
transfer process preceding an irreversible chemical
reaction is written as

(62)

takes place at a plane electrode, the diffusion equations
are

(63)

t 0, x ∞ : cY 0,≥

cR 0, cO cO
b

t 0, x> 0 : DO

∂cO

∂x
-------- DR

∂cR

∂x
--------–

i
nFA
-----------,= = =

DY

∂cY

∂x
-------- 0.=

i nFAcO
b πDOaχ at( ).=

πχ at( ) 1–( ) j 1+ j 1 i

1/a( ) i+
-------------------------+ 

 
i 1=

j 1–

∏
j 1=

∞

∑=

× jnF–
RT

------------ E E1/2–
RT
nF
------- K 1+( )ln– 

  .exp

πχ at( ) 12.9358 19.4225x 9.713x2 1.657x3 0.0627x4 0.0000004x5–+ + + +

1 14.35x 37.9851x2 40.5856x3 19.7314x4 4.005x5 0.0226x6+ + + + + +
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=

jnF–
RT

------------ E E1/2–
RT
nF
------- K 1+( )ln– 

 

O ne R, R Y.⇔+ kf

∂cO

∂t
-------- DO

∂2cO

∂x2
-----------=

0.1

150 100
Potential, mV

0.5

50
0

3

–50

Pade

πχ at( )

0.2

0.3

0.4

Epsilon

Nicholson and Shain [4]

Fig. 4. Graph of current vs. potential using Pade approximation and epsilon algorithm procedures compared with values from
Nicholson and Shain for the scheme of chemical reaction preceding an irreversible charge transfer.
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Table 5.  Current function ( (at)) values with a [5/6] Pade approximation sequence and its coefficients for the scheme of
charge transfer succeeding a reversible chemical reaction

Potential,
mV

Current functions (at) from
Potential,

mV

Current functions (at) from

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

120 0.0092 0.0092 0.008 10 0.3282 0.3283 0.316

100 0.0198 0.0198 0.018 0 0.3800 0.3801 0.372

80 0.0418 0.0418 0.037 –10 0.4186 0.4188 0.414

60 0.0850 0.0850 0.079 –20 0.4402 0.4408 0.44

50 0.1183 0.1183 0.108 –30 0.4450 0.4461 0.449

40 0.1610 0.1610 0.149 –40 0.4351 0.4376 0.443

30 0.2125 0.2125 0.2 –50 0.4102 0.4196 0.426

20 0.2701 0.2701 0.256 –60 0.3528 0.3952 0.405

Note: Reaction: R  N, O + ne  R; series solution: (at) =  ×

; potential scale: –(E – E1/2)n – (RT/F)ln(1 + K); in case of epsilon convergence algorithm:

N = 9; current expression using [5/6] Pade approximant:

(at) = 

πχ

πχ πχ

kf

kb
πχ 1–( ) j 1+

j/ 1 K i

1/a( ) i+
-------------------------+ 

 
i 1=

j 1–

∏
j 1=

∞

∑

jnF–
RT

------------ E E1/2–
RT
nF
------- K 1+( )ln– 

 exp

πχ 12.9358 19.4225x 9.713x
2

1.657x
3

0.0627x
4

0.0000004x
5

–+ + + +

1 14.35x 37.9851x
2

40.5856x
3

19.7314x
4

4.005x
5

0.0226x
6

+ + + + + +
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

Table 6.  Current function ( (at)) values with a [5/6] Pade approximation sequence and its coefficients for the scheme of
charge transfer succeeding an irreversible chemical reaction

Potential,
mV

Current functions (at) from
Potential,

mV

Current functions (at) from

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

120 0.0093 0.0093 0.009 10 0.3642 0.3988 0.333

100 0.0200 0.0200 0.02 0 0.4023 0.4915 0.384

80 0.0425 0.0425 0.042 –10 0.3702 0.5829 0.423

60 0.0880 0.0880 0.086 –20 0.1947 0.6659 0.444

50 0.1243 0.1246 0.12 –30 –0.2419 0.7354 0.448

40 0.1722 0.1733 0.163 –40 –1.1259 0.7889 0.439

30 0.2317 0.2357 0.216 –50 –2.7517 0.8259 0.421

20 0.2994 0.3117 0.273 –60 –5.5927 0.8469 0.399

Note: Reaction: R  Z, O + ne  R; series solution: (at) =  × ;

potential scale: (E – E1/2)n; in case of epsilon convergence algorithm: N = 9; current expression using [5/6] Pade approximant:

(at) = 

πχ

πχ πχ

kf πχ 1–( ) j 1+ 1

j 1–( )!
---------------------- kf/a( ) i+

i 1=

j

∏
j 1=

∞

∑ jnF–
RT

------------ E E1/2–( )exp

πχ 1.9707 1.3269x 0.09x
2

– 0.1655x
3

– 0.0237x
4

– 0.0000001x
5

+ +

1 2.9707x 3.2788x
2

1.6352x
3

0.3503x
4

0.0225x
5

0.0002x
6

–+ + + + +
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
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(64)

and are subject to the following initial and boundary
conditions:

(65)

(66)

(67)

(68)

(69)

From the boundary conditions, current is evaluated and
given by

(70)

The explicit expression for the current function χ(at) as
an infinite series for this scheme is given by [4]:

(71)

For numerical evaluation of the current function, the
above expression is changed to the [5/6] Pade approxi-
mant and which is written as

(72)

where x = exp . For evaluation of cur-

rent function, the value of N = 9 is adopted in the pro-
cedure of epsilon algorithm. The values of current

obtained for various potential values obtained by epsi-
lon algorithm and Pade approximant with the Nichol-
son and Shain [4] are tabulated in Table 6. And also the
graph for the current vs. potential for the above two
procedures are drawn with the current vs. potential val-

∂cR

∂t
-------- DR

∂2cR

∂x2
---------- kfcR.+=

t 0, x 0 : cR
b≥ 0, cO cO

b= = =

t 0, x ∞ : cR
b 0, cO cO

b≥

0 t τ, x< < 0 : cO 0,= =

DO

∂cO

∂x
-------- DR

∂cR

∂x
--------+ 0=

t τ, x> 0 : CR 0, DO

∂cO

∂x
-------- DR

∂cR

∂x
--------+ 0= = =

t 0, x> 0 : DO

∂cO

∂x
-------- i

nFA
-----------.= =

i nFAcO
b πDOaχ at( ).=

πχ at( ) 1–( ) j 1+ 1

j 1–( )!
---------------------- kf/a( ) i+

i 1=

j

∏
j 1=

∞

∑=

× jnF–
RT

------------ E E1/2–( ) .exp

πχ at( ) 1.9707 1.3269x 0.09x2– 0.1655x3– 0.0237x4– 0.0000001x5+ +

1 2.9707x 3.2788x2 1.6352x3 0.3503x4 0.0225x5 0.0002x6–+ + + + +
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=

jnF–
RT

------------ E E1/2–( )

0.1

140 60
Potential, mV

0.5

40
0

–10 –60

πχ at( )

0.2

0.3

0.4

Fig. 5. Graph of current vs. potential using Pade approximation and epsilon algorithm procedures compared with values from
Nicholson and Shain for the scheme of reversible chemical reaction succeeding a reversible charge transfer.
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ues represented by Nicholson and Shain in his paper [4]
in Fig. 6.

4.7. Catalytic Reaction with Reversible Charge 
Transfer (ErCat-Scheme)

In a catalytic mechanism with a simple electron
transfer reversible reaction represented as

(73)

the diffusion equations for a plane electrode are

(74)

(75)

and are subject to the following initial and boundary
conditions:

(76)

(77)

(78)

From the boundary conditions, current is evaluated and
given by

(79)

The explicit expression for the current function χ(at) as
an infinite series for this scheme is given by [4]:

(80)

For numerical evaluation of the current function, the
above expression is changed to the [5/6] Pade approxi-
mant and which is written as

(81)

where x = exp . For evaluation of cur-

rent function, the value of N = 9 is adopted in the pro-
cedure of epsilon algorithm. The values of current
obtained for various potential values obtained by epsi-

lon algorithm and Pade approximant with the Nichol-
son and Shain [4] are tabulated in Table 7. And also the
graph for the current vs. potential for the above two
procedures are drawn with the current vs. potential val-
ues represented by Nicholson and Shain in his paper [4]
in Fig. 7.

O ne R, R Z+ O,+ kf

∂cO

∂t
-------- DO

∂2cO

∂x2
----------- kfcO+=

∂cR

∂t
-------- DR

∂2cR

∂x2
---------- kfcR–=

t 0, x 0 : ≥ cO cO
b , cR cR

b ~0( )= = =

t 0, x ∞ : cO cO
b , cR 0≥

t 0, x> 0 : DO

∂cO

∂x
-------- DR–

∂cR

∂x
--------=

i
nFA
-----------.= =

i nFAcO
b πDOaχ at( ).=

πχ at( ) 1–( ) j 1+ kf/a( ) j+
j 1=

∞

∑=

× jnF–
RT

------------ E E1/2–( ) .exp

πχ at( ) 2.5416– 6.3525x– 3.7856x2– 0.7414x3– 0.0349x4– 0.0000004x5–

1 1.091749x– 9.467979x2– 13.13504x3– 7.289048x4– 1.6335x5– 0.1041x6–
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=

jnF–
RT

------------ E E1/2–( )

0.1
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Fig. 6. Graph of current vs. potential using Pade approximation and epsilon algorithm procedures compared with values from
Nicholson and Shain for the scheme of irreversible chemical reaction succeeding a reversible charge transfer.
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4.8. Catalytic Reaction with Irreversible Charge 
Transfer (EirCat-Scheme)

The diffusion equation for the catalytic mechanism
with an irreversible chemical reaction, i.e.,

(82)O ne R, R Z+ O,+ kfk

which takes place at a plane electrode, has the diffusion
equations

(83)
∂cO

∂t
-------- DO

∂2cO

∂x2
----------- kfcR+=

Table 7.  Current function ( (at)) values with a [5/6] Pade approximation sequence and its coefficients for the scheme of
catalytic reaction with reversible charge transfer

Potential,
mV

Current functions (at) from
Potential,

mV

Current functions (at) from

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

120 0.0094 0.0094 0.009 10 0.3375 0.3375 0.336

100 0.0202 0.0202 0.02 0 0.3921 0.3920 0.391

80 0.0426 0.0426 0.042 –10 0.4339 0.4338 0.432

60 0.0867 0.0868 0.086 –20 0.4504 0.4590 0.459

50 0.1209 0.1209 0.12 –30 0.4671 0.4672 0.468

40 0.1646 0.1646 0.163 –40 0.4598 0.4609 0.463

30 0.2176 0.2176 0.216 –50 0.4336 0.4420 0.45

20 0.2770 0.2770 0.275

Note: Reaction: R  Z, O + ne  R; series solution: (at) = ; potential scale:

(E – E1/2)n; in the case of epsilon convergence algorithm: N = 9; current expression using [5/6] Pade approximant: (at) =

πχ

πχ πχ

kf πχ 1–( ) j 1+
kf/a( ) j+

jnF–
RT

------------ E E1/2–( )exp
j 1=

∞

∑

πχ

2.5416– 6.3525x– 3.7856x
2

– 0.7414x
3

– 0.0349x
4

– 0.0000004x
5

–

1 1.091749x– 9.467979x
2

– 13.13504x
3

– 7.289048x
4

– 1.6335x
5

– 0.1041x
6

–
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
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Fig. 7. Graph of current vs. potential using Pade approximation and epsilon algorithm procedures compared with values from
Nicholson and Shain for the scheme of catalytic reaction with reversible charge transfer.
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(84)

The initial and boundary conditions are as follows:

(85)

(86)

(87)

(88)

From the boundary conditions, current is evaluated and
given by

(89)

The explicit expression for the current function χ(at) as
an infinite series for this scheme is given by [4]:

(90)

where b = αnaFv/RT. The current function represented
by above equation (60) is converted to a useful rational
function using the Pade approximation, in [5/6] approx-
imant, and is expressed as

(91)

where x = exp .

For evaluation of current function, the value of N = 9 is
adopted in the procedure of epsilon algorithm. The val-
ues of current obtained for various potential values
obtained by epsilon algorithm and Pade approximant
with the Nicholson and Shain [4] are tabulated in Table
8. And also the graph for the current vs. potential for the
above two procedures are drawn with the current vs.
potential values represented by Nicholson and Shain in
his paper [4] in Fig. 8.

5. DISCUSSION AND CONCLUSIONS

Using the procedures described above, the current
function was calculated for all the eight cases from the
series solutions. By trial and error, it was found that
[5/6] Pade and [10/11] Pade give highly reproducible
current values in the negative potential region as well.
And also N = 9 or N = 11 gives comparable values with
those values presented by Nicholson and Shain [4]. In
general, in these cases, Pade approximant was found to
give quite accurate current function values. It was noted
that, in the sixth scheme, for negative potentials, current
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------------------- E E0–
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--------------- 
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Fig. 8. Graph of current vs. potential using Pade approximation and epsilon algorithm procedures compared with values from
Nicholson and Shain for the scheme of catalytic reaction with irreversible charge transfer.
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values are deeply divergent. Hence, a good rational
function could not be represented by Pade approxima-
tion as well as by the epsilon algorithm. In such a case,
that is, for the sixth scheme, we can consider the con-
struction of a separate Pade function for current values
of the negative potentials alone.

Typical current functions calculated for different
potential values using the two procedures for all the
eight cases are compared with those values presented
by Nicholson and Shain [4] in Tables 1–8 together with
the graphical representation. It is also to be noted that
the orders of the Pade and epsilon convergence are not
unique. For investigation of reaction mechanisms, only
peak current and potential are normally used in the for-
mulation of diagnostic criteria. A great deal of informa-
tion contained in the rest of the wave is ignored. Now,
the user of voltammetric technique can take the help of
epsilon algorithm and Pade approximant procedures
presented in this paper to exploit for investigation of the
reaction mechanism not only the peak current in the
formulation of the diagnostic criteria but also the infor-
mation contained in the rest of the wave.

The series solution for the electron transfer pro-
cesses involving coupled chemical reactions under lin-
ear sweep voltammetric conditions are indeed quite dif-
ficult to sum up. Some of the series are indeed highly
divergent as shown by the coefficients of series solu-
tions. In the Pade approximant [M/N], it was found that
N should be greater than M or N = M + 1 to achieve opti-
mal results over a wide potential range. In series solu-
tions involving chemical reaction rate parameters, no
simplifying approximation of the series was found to be
necessary for finding out the solution. The availability

of an algebraic expression is more preferable especially
for simulating theoretically, the voltammograms for
various values of system parameters. Finally, it is to be
noted that the values of N or M are not the unique val-
ues. Only for illustration and to indicate the usefulness
of the method, the values of N = 9 were used in epsilon
algorithm and M = 5 and N = 6 were adopted. These val-
ues can be altered by the appropriately by the user his
for analysis and implementation.

NOTATION

x—distance from the electrode
t—time
T—temperature, K
F—Faraday constant
R—gas constant
n—number of electrons
v—potential scan rate
ki—rate constant at the initial potential
cO—concentration of the substance O
cR—concentration of the substance R

—bulk concentration of the substance O

—bulk concentration of the substance R

DO, DR, DX—diffusion coefficient
E—potential of the electrode
E0—formal electrode potential
E1/2—polarographic half-wave potential
Ep—peak potential

cO
b

cR
b

Table 8.  Current function ( (bt)) values with a [5/6] Pade approximation sequence and its coefficients for the scheme of
catalytic reaction with irreversible charge transfer

Potential,
mV

Current functions (bt) from
Potential,

mV

Current functions (bt) from

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

Pade
approximation

epsilon
convergence

Nicholson
and Shain [4]

120 0.0163 0.0163 0.016 10 0.4719 0.4719 0.469
100 0.0349 0.0349 0.035 0 0.5064 0.5064 0.504
80 0.0730 0.0730 0.072 –10 0.5130 0.5130 0.511
60 0.1459 0.1459 0.145 –20 0.4974 0.4977 0.497
50 0.2001 0.2001 0.198 –30 0.4694 0.4717 0.47
40 0.2661 0.2661 0.264 –40 0.4328 0.4463 0.44
30 0.3400 0.3400 0.339 –50 0.3529 0.4317 0.421
20 0.4127 0.4127 0.41

Note: Reaction: R  Z, O + ne  R; series solution:   (bt) = 

× ; potential scale: (E – E0)αna – (RT/F)ln /ks; in the case of epsilon convergence

algorithm: N = 9; current expression using [5/6] Pade approximant:

(bt) = 

πχ

πχ πχ

kf πχ 1–( ) j 1+ π( )
j

kf/b( ) i+
i 1=

j 1–

∏
j 1=

∞

∑

jαnaF–

RT
------------------- E E

0
–

RT
αnaF
------------- πDb

ks
--------------- 

 ln+ 
 exp πDb

πχ 1.6344 1.0136x 0.3063x
2

0.0573x
3

0.0035x
4

0.00000035x
5

–+ + + +

1 2.6603x 3.0387x
2

1.9090x
3

0.6956x
4

0.1392x
5

0.0118x
6

+ + + + + +
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
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APPENDIX 1

Consider the typical infinite series (90) in the
scheme of catalytic reaction with irreversible charge
transfer, which is divergent for negative potential. Now,
we compute the value of the current function for the
potential value –60 mV. A numerical approximation to
current function is obtained from its first 2n + 1 partial

sums, and they are taken as  with  = 0. The quan-

tities  are evaluated using (3) and tabulated as loz-

enge diagram in Table 9 for N = 5. Finally,  gives the
current function value.

APPENDIX 2

Consider the typical infinite series (90) in the
scheme of catalytic reaction with irreversible charge
transfer given by [4]:

(A2.1)

The [5/6] Pade approximant is

(A2.2)

where 

x = exp .

Equate the equations (A.1) and (A.2), and by match-
ing the coefficient of x6, x7, x8, x9, x10, x11, we get a set
of linear equations for Bi (i = 1 to 6) in matrix form as

(A2.3)

Solving above linear equations, we get the B values as

(A2.4)

Again, by equating the constant term and the coefficient of x, x2, x3, x4, x5, respectively, we have a set of linear
equations as

(A2.5)

ε0
m ε 1–

m

εs 1+
m

ε4
1

πχ bt( ) 1–( ) j 1+ π( ) j
kf/b( ) i+

i 1=

j 1–

∏
j 1=

∞

∑=

×
jαnaF–
RT

------------------- E E0–
RT

αnaF
------------- πDb

ks
--------------- 

 ln+ 
  .exp

L/M[ ] A0 A1x A2x2 A3x3 A4x4+ + + +(=

+ A5x5 )/ 1 B1x B2x2 B3x3+ + +(

+ B4x4 B5x5 B6x6+ + ),

jαnaF–
RT

------------------- E E0–
RT

αnaF
------------- πDb

ks
--------------- 

 ln+ 
 

2.7089– 1.954 1.3056– 0.8163 0.4813– 0.2692

3.4304 2.708– 1.9540 1.3056– 0.8163 0.4513–

3.8893– 3.430 2.7089– 1.9540 1.3056– 0.8163

3.8252 3.889– 3.4304 2.7089– 1.9540 1.3056–

3.0818– 3.825 3.8893– 3.4304 2.7089– 1.9540

1.7728 3.081– 3.8252 3.8893– 3.4304 2.7089– 
 
 
 
 
 
 
 
  B1

B2

B3

B4

B5

B6 
 
 
 
 
 
 
 
 
  3.4304

3.8893–

3.8252

3.0810–

1.7728

3.0081– 
 
 
 
 
 
 
 
 

.=

B1

B2

B3

B4

B5

B6 
 
 
 
 
 
 
 
 
  2.6603

3.0387

1.9090

0.6956

0.1392

0.0118 
 
 
 
 
 
 
 
 

.=

A0 0.2692=

A1 0.4813– 0.2692( )B1+=

A2 8163 0.4813( )B1– 0.2692( )B2+=

A3 1.3056– 8163069( )B1 0.4813( )B2– 0.2692( )B3+ +=

A4 1.9570 1.3056( )B1– 8163069( )B2 0.4813( )B3– 0.2692( )B4+ +=

A5 2.7089– 1.9540( )B1 1.3056( )B1– 8163069( )B2 0.4813( )B3– 0.2692( )B4.+ + +=
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Solution of the equations (A.5) gives the values of A as

(A2.6)

By (A.2) and with the values of A’s and B’s, the Pade [5/6] approximant for the current function is expressed as

(A2.7)
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