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Abstract

The kinetics, mass transfer, surface dynamics and double layer charging of consecutive electrochemical reactions have been investigated so as to
set up a complete formulation and dynamic optimization of its performance in batch electrochemical reactors. The dynamic optimization problem
statements are exclusively put together to represent the behavior of both Faradaic and non-Faradaic processes and consequently the formulated
dynamic problems have been solved using the maximum principle. The results of applying the optimal time-varying profiles of electrode potential
are compared between the two different modes of batch electrochemical reactor and also with those resulting from the tradition-operating style of
these reactors. Despite the effect due to double layer charging, an enhanced selectivity result has been obtained even in the presence of significant
m
m
©

K

1

s
t
t
r
o
b
e
o
d
i
a
t
p
s
c

b

C

1
d

ass transfer resistance by determining the best transient operating profile of control variable. Besides these, this paper also discusses on the
ethodology of dynamic optimization in continuous stirred tank and plug flow electrochemical reactors.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Electro-organic synthesis reactions have been extensively
tudied in the laboratory, but few are performed industrially; one
ypical problem is low reaction selectivity at the electrode poten-
ial necessary for commercial operation. As a means to improve
eaction selectivity, Bakshi and Fedkiw [1] demonstrated the-
retically the potential utility of optimal-control theory for a
ranched chemical-electrochemical reaction, which has not been
xtensively applied to electrochemical reactors although static
ptimization of electrochemical processes is keen and well-
iscussed topic [2]. Subsequently Fournier et al. [3] reported
ncreased selectivity for the reduction of oxalic acid to glyoxalic
cid; different dynamic optimization methods have been used for
he determination of optimal time-varying profiles of electrode
otential. Zhou et al. [4] studied the same process and demon-
trated the methodology of using the K–L expansion in optimal
ontrol. A variational approach to the control of electrochemical
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E-mail addresses: vijayasekaranb@yahoo.com (V. Boovaragavan),

hydrogen reactions was reported [5] for different cost objective
and admissible control strategies. More recently, Vijayasekaran
and Basha [6] explained the importance of surface concentration
dynamics during process control policy evaluation by means of
a coupled chemical-electrochemical reaction sequence using the
calculus of variation.

Previous contributions on the optimization of batch elec-
trochemical reactor for consecutive electrochemical reactions
assumed steady state assumption for the exclusion of surface
concentration variation during the batch time. This assumption
is quite contradictory while doing the dynamic optimization. The
effect of surface concentration on the reaction rate is of signif-
icant magnitude in many electrochemical processes. Moreover,
the effect of non-Faradaic phenomena is also greatly ignored.
In general non-Faradaic phenomena plays a very important role
in time dependent variation of electrode potential and in partic-
ular, it predominates while starting-up the process. Therefore,
while making up a control policy the knowledge of these should
be taken into account for the successful design of optimal con-
troller and also for an efficient online implementation of control
strategy in batch electrochemical reactors.
asha@cecri.res.in, cab 50@yahoo.co.in (C.A. Basha).
1 Department of Chemical Engineering, Tennessee Technological University,
ookeville, TN 38505, USA.

When a current is applied to an electrode it becomes dis-
tributed among the processes of: (a) non-Faradaic – charging
the double layer and charging the specific interactions between
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the electrode; and certain carriers (b) Faradaic – electron trans-
fer reaction between the electrode and acceptors/donors in the
solution and also mass transport as a result of coupling of these
phenomena with bulk solution. The general equation for total
current iT as a function of electrode potential E, in the unsteady
state form from which E as function of time t can be obtained is
written as follow

iT = Cdl
dE

dt
+ q

dθ

dt
+

∑
j

rj = (Cdl + Cφ)
dE

dt
+

∑
j

rj (1)

where Cdl is the double-layer capacitance; and q can be taken
as the charge required for monolayer coverage of the adsorbed
species; −rj is the rate of the jth electrochemical reaction; and
C� (=qdθ/dE), the pseudocapacitance.

The first term in Eq. (1) represents the charge necessary
to equalize the charge on the metal surface, i.e. the dou-
ble layer charging. The study of electrical double layer is
important because the charge distribution in a given system
influences the electron transfer and thus the course of elec-
trochemical reaction. In the double layer at plane electrodes,
charge densities of about 16–50 �F cm−2 are commonly real-
izable and so Cdl has certain effect on the electrode reaction
rate. The second term represents the pseudocapacitance associ-
ated with chemisorbed electroactive intermediates in the elec-
trode process and hence information on characteristics of the

2. Mathematical analysis and computational method

Many physical systems are naturally described by
differential-algebraic equations (DAEs). A general dynamic
optimization problem can be written as

Maximize I =
∫ tf

0
χ(x, u, t) dt (2a)

Subject to

f (ẋ, x, u, t) = 0 (2b)

g(x, u, t) = 0 (2c)

h(x, u, t) ≤ 0 (2d)

where (2c) are addition equality constraints and (2d) are addi-
tional inequality constraints. x is a vector of state variables x1,
x2, . . ., xn; and u, a vector of control variables u1, u2, . . ., ur. In
our cases, there is only one additional equality constraint; the
constraint is accounted for by the use of Lagrange multiplier λ,
combining Eqs. (2a) and (2c),

I =
∫ tf

0
[χ(x, u, t)− λg(x, u, t)] dt (3)

Now, instead of I, Ī should be maximized. To solve this problem,
an additional state variable x (t) is introduced. It follows then,
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corresponding electrochemical isotherms. This pseudocapaci-
tance behavior of the electrode interface bearing electroactive-
chemisorbed intermediates is vital only in the case of high
area porous electrode material used in electrochemical power
sources [7]. In battery and fuel cells, this mechanism accom-
modates about 2–5% of the total charge accepted. In elec-
trochemical capacitors, the charge storage process is totally
non-Faradaic, i.e. ideally no electron transfer takes place across
the electrode interface and the storage of electric charge and
energy is electrostatic. But, in electrochemical synthesis, the
charge for adsorption–desorption is much lesser than the double-
layer electronic charge. Hence, in the subsequent sections it is
taken that the total current is distributed among the rest of the
phenomena.

The objective of the present work is to incorporate the sur-
face concentration dynamics in batch reactor for consecutive
electrochemical reactions together with the effect of double
layer charging. To demonstrate the present methodology, the
optimal time-varying electrode potential are determined for
a potentially useful organic synthesis A�B�D (the elec-
tro reduction of oxalic acid to glyoxylic acid) taking place in
a batch electrochemical reactor with and without electrolyte
recirculation. The rest of the paper is organized as follows:
the general dynamic optimization problem and the solution
method are discussed first. This is followed by the formulation
of dynamic optimization problem statement. Next, the compu-
tational results are discussed that provides a physical basis for
the predicted trends. Finally, some generalizations are presented
for the optimal control of continuous stirred tank electrochem-
ical reactor (CSTER) and plug flow electrochemical reactor
(PFER).
i

hat

˙n+1 = [χ(x, u, t)− λg(x, u, t)]; xn+1(0) = 0 (4)

he problem is thus transformed into one of maximizing xn+1(tf)
or a DAEs system described by Eqs. (2b) and (4). Now, the vari-
tional problem of interest is, to maximize an integral functional

0 = J0[xn+1(tf)] (5)

ubject to the constraints

˙ = f (x(t), u(t)); x(0) = x0 (6a)

˙n+1 = [χ(x, u, t)− λg(x, u, t)]; xn+1(0) = 0 (6b)

he above-constrained optimization problem can be trans-
ormed into a non-constrained optimization problem by defining
n augmented performance index.

= J0 +
∫ tf

0

n+1∑
i=1

γi

[−ẋi + fi(x(t), u(t))
]

dt (7)

here γ i’s are the Lagrange multipliers: they are determined
ptimally by the computational method used. The resulting
roblem Eq. (7) is then a standard unconstrained optimiza-
ion problem whose solution, if it exists, satisfies the following
ifferential-algebraic system [8].

At this stage, it is convenient to introduce a new function H
alled ‘Hamiltonian’ which is defined as

=
n+1∑
i=1

γifi(x(t), u(t)) (8)
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with the help of H, we can write the differential-algebraic system
equations as

ẋ = ∂H

∂γ
, x(0) = x0 (9a)

γ̇ = −∂H

∂x
, γ(tf) =

[
∂J0

∂x

]
tf

(9b)

∂H

∂u
= 0 (9c)

It can be seen that the resulting DAEs system is a two-point
boundary value problem that require numerical procedures.
Therefore, the computational procedure as outlined in Fig. 1 is
followed. Optimal control profiles under different conditions are
determined by using one of the major mathematical functional
areas of Maple® 8.00 by Waterloo Maple Inc., the differential
equations.

3. Batch electrochemical reactor

The consecutive electrochemical reactions under considera-
tion is similar to the electrochemical reduction of the reactant
oxalic acid (A) to a desired product glyoxalic acid (B) and fur-
ther electrochemical reduction to the by-product glycolic acid

(D) as A
n1e
−

←→B
n2e
−

←→D. The schematic of various electrochemi-
cal reactors used for dynamic modeling are presented in Fig. 2.
The dynamics of reactants and various electrochemical products
over the surface of an electrode and in the bulk is usually mod-
eled [9] through a combination of electrochemical reaction and
mass transport velocities. The component material balances for
each species are

dCb
A

dt
= −kLAa(Cb

A − Cs
A) (10a)

dCs
A

dt
= kLAa(Cb

A − Cs
A)− kf10ae−α1fECs

A + kb10ae−β1fECs
B

(10b)

dCb
B

dt
= kLBa(Cs

B − Cb
B) (10c)
Fig. 1. Algorithm used for computing optimal control profile.
dCs
B

dt
= −kLBa(Cs

B − Cb
B)+ kf10ae−α1fECs

A − kb10ae−β1fECs
B

− kf20ae−α2fECs
B + kb20ae−β2fECs

D (10d)

dCb
D

dt
= kLDa(Cs

D − Cb
D) (10e)

dCs
D

dt
= −kLDa(Cs

D − Cb
D)+ kf20ae−α2fECs

B − kb20ae−β2fECs
D

(10f)

Here, Cb
i is the bulk concentration of the species i; Cs

i , the
concentration at the electrode surface; kLi , the mass transfer
coefficient of species i; f = F/RT; α and β are the transfer coef-
ficients; and ‘a’, the specific electrode area. The total current is
expressed as a sum of Faradaic and non-Faradaic current as

iT = Cdl
dE

dt
+ n1F (kf1C

s
A − kb1C

s
B)+ n2F (kf2C

s
B − kb2C

s
D)

(11)

Thus, the problem can be stated as

Maximize I =
∫ tf

0
Cb

B(t) dt (12)

subject to the differential constraints Eqs. (10a)–10(f) and
an additional equality constraint Eq. (11). The dimensionless
forms of these equations are useful to define the problem more
closely.
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Fig. 2. Schematic representation of the batch and continuous flow electrochemical reactors. (a) Batch electrochemical reactor; (b) batch electrochemical reactor with
electrolyte recirculation; (c) continuous stirred tank electrochemical reactor (CSTER); (d) plug flow electrochemical reactor (PFER).

τ∗1 =
tf

Vm/q
; τ∗2 =

tf

VR/q
; t∗ = t

tf
; xi = Ci

CA0

i∗T =
iT

nF

atf

CA0

; C∗dl =
atf

nFCA0

Cdl

k∗Li
= kLiatf; i = A, B & D

k∗fi = kfi0atfe
−αifE & k∗bi

= kbi0 atfe
−βifE; i = 1, 2

(13)

Introducing these dimensionless quantities in to the governing
model equations, the dynamic optimization problem statement
can be written as follow:

Maximize I = x3(1) (14)

such that

ẋ1 = −k∗LA
(x1 − x2) (15a)

ẋ2 = k∗LA
(x1 − x2)− k∗f1x2 + k∗b1x4 (15b)

ẋ3 = k∗LB
(x4 − x3) (15c)

ẋ4 = −k∗LB
(x4 − x3)+ k∗f1x2 − k∗b1x4 − k∗f2x4 + k∗b2x6 (15d)

ẋ5 = k∗LD
(x6 − x5) (15e)

ẋ6 = −k∗LD
(x6 − x5)+ k∗f2x4 − k∗b2x6 (15f)

and i∗T = C∗dlĖ
∗ + k∗f1x2 + (k∗f2 − k∗b1)x4 − k∗b2x6 (16)

c

x

x

d

variable x7(t), defined as

x7(t∗) =
∫ 1

0
x3 − λ[C∗dlĖ

∗ + k∗f1x2

+ (k∗f2 − k∗b1)x4 − k∗b2x6 − i∗T] dt∗ (18)

Then it follows,

ẋ7 = x3 − λ
⌊
C∗dlĖ

∗ + k∗f1x2 + (k∗f2 − k∗b1)x4 − k∗b2x6 − i∗T
⌋

;

x7(0) = 0 (19)

The problem is now transformed into one of maximizing
J0 = J0[x7(t)] (ref. Eq. (5)) for a system described by Eqs.
(15a)–(15f) and (19) by a proper choice of E(t), 0≤ t≥ tf. At cor-
rect value of λ, x7(t) becomes equal to I, Eq. (14). The derivative
of the Hamiltonian for this system is,

∂H

∂E∗
= k∗f1α1x2(γ2 − γ4 + λγ7)− k∗f2α2x4(γ4 − γ6 + λγ7)

(20)

The corresponding adjoint equations are derived as follows:

γ̇1 = k∗LA
(γ1 − γ2) (21a)

γ̇2 = −k∗LA
γ1 + (k∗LA

+ k∗f1
)γ2 − k∗f1

γ4 + λk∗f1
γ7 (21b)

γ̇3 = k∗mB(γ3 − γ4) (21c)

γ

γ

γ

Only reactant A is present initially, which results in the initial
onditions

1(0) = 1.0 (17a)

i(0) = 0 where i = 2, 3, ..., 6 (17b)

As discussed in Section 2, in applying the numerical proce-
ure shown in Fig. 1, it is necessary to introduce a seventh state
˙4 = −k∗b1
γ2 − k∗LB

γ3 + (k∗LB
+ k∗b1

+ k∗f2
)γ4 − k∗f2

γ6

+λ(k∗f2
− k∗b1

)γ7 (21d)

˙5 = k∗mE(γ5 − γ6) (21e)

˙6 = −k∗b2
γ4 + (k∗mE + k∗b2

)γ6 − k∗mEγ5 (21f)



V. Boovaragavan, C.A. Basha / Chemical Engineering Journal 117 (2006) 213–221 217

γ̇7 = 0 (21g)

With boundary conditions

γi(1) = 0 where i = 1, 2, ..., 6 and γ7(1) = 1.0 (22)

The boundary conditions in Eq. (22) are derived from Eq. (9b).
The control variable E(t) can be expressed in terms of state and
adjoint variables as

E(t) = 1

(α2 − α1)f
ln

[
α2kf20x4(γ6 − γ4 − λγ7)

α1kf10x2(γ2 − γ4 + λγ7)

]
(23)

Integrating last of Eqs. (21a)–(21g), one obtains γ7(t) = 1; hence,
this adjoint equation drops out. Starting with assumed values
for control policy E0(t) and λ, the procedure as in Fig. 1 has
been followed for computation of optimal E(t). The state equa-
tions are solved using the initial value problem (IVP) solver
and the adjoint equations using the boundary value problem
(BVP) solver. For a particular iteration, the Maple’s dsolve
command performs this evaluation. The type of problem (BVP
or IVP) is automatically detected by dsolve, and the appro-
priate method is used. The default IVP method is a Runge-
Kutta Fehlberg method, which produces a solution accurate to
fifth order. The trapezoid method is generally used for typi-
cal BVP problems. The physical data used for the computation
are as follow: a = 140.1 m−1, kmA = 10−4 ms−1, kmA/kmB = 10,
k = 10−13 ms−1, k = K /3, k = k = 0, τ = 104.58,
τ
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Fig. 3. Plots of optimal control profile for: (a) batch electrochemical reactor;
(b) batch electrochemical reactor with electrolyte recirculation. (�) Represents
km = 5× 10−5 ms−1, (�) km = 7× 10−5 ms−1, (�) km = 10−4 ms−1.

pound is obtained by the optimal control of the potential. The
production rate provided by steady control further decreases as
the mass transfer resistance increases because of the diminished
sensitivity of the reaction rate to the applied constant poten-
tial. With optimal control, however, the percentage increase in
the production and selectivity above the steady-control value
increase with decreasing km. This interesting result is caused
by the use of a short time high potential, i.e. during the start up
and the gradual decrease in the applied potential. In this manner,
mass transfer limitations are not as significant since the desired
electrochemical reaction is not occurring for the majority of
the time after this initial period. During the delayed time, the
potential contribution for double layer charging is also helpful
in preventing the undesired electrochemical reactions. Certainly,
the production rate of the desired product B is high for all the
f10 f20 f10 b10 b20 1

2 = 167.33, α1 = 0.162, α2 = 0.157, β1 = β2 = 0, T = 293.15 K.
Fig. 3a shows the best optimal time-varying potential pro-

le for different mass transfer rates. As it can be seen that at
ery low times the potential to be applied is close to the upper
imit of the control variable. As time increases, the potential
ecreases restricting the formation of undesired product. This is
rue because the formation of most of the desired electrochem-
cal product and also double layer charging are taking place
t the early stage of the reaction. Fournier et al. [3] have pre-
ented an optimal control policy for this reaction system, taking
lace in a batch electrochemical reactor without electrolyte recir-
ulation. Using the different computation techniques, similar
ptimal electrode potential-time profile was obtained by Zhou
t al. [4]. It can be noticed here (Fig. 3a) that for the same oper-
ting conditions the profile obtained is almost nearer the upper
imit of the potential. Since they correspond to energy efficiency
f the electrochemical process, the evaluated control policy has
n industrial interest from the process economics point of view
nd thus necessitates electrolyte recirculation. Also, it can be
bserved that at kinetic-controlled conditions (km = 10−4 ms−1)
he potentials for time-varying control are smallest. It shows
he importance of taking into account the surface concentration
ynamics and non-Faradaic process at the optimization problem
tatement level and hence the importance of current efficiency.

Fig. 4a and b are the resultant concentration profiles over the
atch period for the optimal time-varying potential control and
tatic control, respectively. The best steady potential was found
y solving numerically IVP Eqs. (15a)–(15f) using dsolve com-
and for potentials differing by 0.01 V from−1.0 to−1.7 V and

ocating that corresponding to the maximum x3(t). Regardless
f the value of km, the maximum production of the desired com-
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Fig. 4. Variation of dimensionless concentration on applying the: (a) best steady
potential; and (b) optimal time-varying potential in batch electrochemical reac-
tor.

three mass transfer limits, but percentage increase in the produc-
tion above the steady control value decreases with increasing
mass transfer resistance. An effort to overcome this trend is the
use of electrolyte recirculation through a mixing tank and it is
discussed in the next section.

4. Batch electrochemical reactor with electrolyte
recirculation

The traditional concept of a batch reactor is that of a sealed
vessel, in which no material is supplied or withdrawn and where
the reaction is allowed to run its course (Fig. 2a). An applica-
tion of this, seen later, is when batch electrochemical reactors
are operated with a high degree of recycle. In electrosynthe-
sis on an industrial scale, it is not always desirable to operate in

these ways. Therefore, an alternative batch operation is realized,
where a rapid recirculation of electrolyte from a mixing tank to a
reactor, external to the tank, is achieved (Fig. 2b). The dynamic
problem for this type of reactor has been formulated in the same
way as accomplished for the batch electrochemical reactor. The
model equations are

Vm
dCA

dt
= qC′A − qCA (24a)

VR
dC′A
dt
= −kLAAe(C′A − Cs

A)+ qCA − qC′A (24b)

dCs
A

dt
= kLAa(C′A − Cs

A)− kf10ae−α1fECs
A + kb10ae−β1fECs

B

(24c)

Vm
dCB

dt
= qC′B − qCB (24d)

VR
dC′B
dt
= −kLBAe(Cs

B − C′B)+ qCB − qC′B (24e)

dCs
B

dt
= −kLBa(Cs

B − C′B)+ kf10ae−α1fECs
A − kb10ae−β1fECs

B

− kf20ae−α2fECs
B + kb20ae−β2fECs

D (24f)

V

V

t

M

f

M

s

x

x

x

x

x

x

x

m
dCD

dt
= qC′D − qCD (24g)

R
dC′D
dt
= −kLDAe(Cs

D − C′D)+ qCD − qC′D (24h)

dCs
D

dt
= −kLDa(Cs

D − C′D)+ kf20ae−α2fECs
B − kb20ae−β2fECs

D

(24i)

The total current expression is same as given by Eq. (11) and
he performance index is

aximize I =
∫ tf

0
C′B(t) dt (25)

The complete problem statement in dimensionless form is as
ollow:

aximize I = x5(1) (26)

uch that

˙1 = τ∗1 (x2 − x1) (27a)

˙2 = −k∗LA
(x2 − x3)+ τ∗2 (x1 − x2) (27b)

˙3 = k∗LA
(x2 − x3)− k∗f1x3 + k∗b1x6 (27c)

˙4 = τ∗1 (x5 − x4) (27d)

˙5 = k∗LB
(x6 − x5)+ τ∗2 (x4 − x5) (27e)

˙6 = −k∗LB
(x6 − x5)+ k∗f1x3 − k∗b1x6 − k∗f2x6 + k∗b2x9 (27f)

˙7 = τ∗1 (x8 − x7) (27g)
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ẋ8 = k∗LD
(x9 − x8)+ τ∗2 (x7 − x8) (27h)

ẋ9 = −k∗LD
(x9 − x8)+ k∗f2x6 − k∗b2x9 (27i)

and i∗T = C∗dlĖ
∗ + k∗f1x2 + (k∗f2 − k∗b1)x4 − k∗b2x6 (28)

The initial conditions for the state variables are

x1(0) = 1.0 (29a)

xi(0) = 0 where i = 2, 3, ..., 9 (29b)

The problem is modified by taking into account the additional
equality constraint Eqs. (27a)–(27i) by incorporating a state vari-
able as

ẋ10 = x5 − λ
⌊
C∗dlĖ

∗ + k∗f1x3 + (k∗f2 − k∗b1)x6 − k∗b2x9 − i∗T
⌋

;

x10(0) = 0 (30)

and the corresponding Hamiltonian derivative is,

∂H

∂E∗
= k∗f1α1x3(γ3 − γ6 + λγ10)− k∗f2α2x6(γ6 − γ9 + λγ10)

(31)

The adjoint equations are

γ̇1 = τ∗1γ1 − τ∗2γ2 (32a)

γ̇2 = −τ∗1γ1 + (k∗LA
+ τ∗2 )γ2 − k∗LA

γ3 (32b)

γ

γ

γ

γ

γ

γ

γ

γ

w

γ

a

E

T
a
o
a
a
r
t
i

Computations are performed by invoking the dsolve function
option numeric or type = numeric to find a numerical solution
for the ODE system. In this case that an initial solution pro-
file was not provided, the first error message indicates that
dsolve/numeric cannot find a suitable initial solution profile.
The second message indicates that the Newton iteration is not
converging, because the provided solution profile is too differ-
ent from the true solution. This is a difficult problem. Often
this error arises when a problem has narrow boundary layers
or sharp corner layers. The error messages suggest the best
strategy for solving this problem is use of a different contin-
uation or a finer mesh, but a greater number of initial points by
using the initmesh argument. Thus, default integration proper-
ties of the ODEs solver performance are altered to overcome
the convergence difficulties. But, this will not affect the main
results.

Fig. 3b presents the optimal electrode potential-time profiles
obtained by the above computational procedure. It is interesting
to notice that the computation of optimal profiles of electrode
potential is almost the same for both the reactor systems. It is
therefore important to analyze how the attained performance
index differs in these two systems. Fig. 5a and b compares the
concentrations of the reactant and products during the batch time
for the two modes of controlling the batch electrochemical pro-
cess with electrolyte recirculation. To recognize the enhanced
mass transport of species to and from an active electrode sur-
f
b
I
i
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w
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v
c
t
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I
v
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m

˙3 = −k∗LA
γ2 + (k∗LA

+ k∗f1
)γ3 − k∗f1

γ6 + λk∗f1
γ10 (32c)

˙4 = τ∗1γ4 − τ∗2γ5 (32d)

˙5 = −τ∗1γ4 + (k∗LB
+ τ∗2 )γ5 − k∗LB

γ6 − γ10 (32e)

˙6 = −k∗b1
γ3 − k∗LB

γ5 + (k∗LB
+ k∗b1

+ k∗f2
)γ6 − k∗f2

γ9

+λ(k∗f2
− k∗b1

)γ10 (32f)

˙7 = τ∗1γ7 − τ∗2γ8 (32g)

˙8 = −τ∗1γ7 + (k∗LD
+ τ∗2 )γ8 − k∗LD

γ9 (32h)

˙9 = −k∗b2
γ6 − k∗LD

γ8 + (k∗LD
+ k∗b2

)γ9 − λk∗b2
γ10 (32i)

˙10 = 0 (32j)

ith boundary conditions

i(1) = 0 where i = 1, 2, ..., 9 and γ10(1) = 1.0 (33)

nd the control variable in terms of state and adjoint variables is

(t) = 1

(α2 − α1)f
ln

[
α2kf20x6(γ9 − γ6 − λγ10)

α1kf10x3(γ3 − γ6 + λγ10)

]
(34)

hus, the system dynamics equations, which define the process,
re given by Eqs. (27a)–(27i), (30) and (32a)–(32j). Two points
n the extremum curve are fixed with the initial and bound-
ry conditions (Eqs. (29a), (29b) and (33)) on the state and
djoint variable, respectively. The Hamiltonian derivative with
espect to the control variable is given by Eq. (31), to improve
he assumed profile. To aid in computation the control variable
s also expressed in terms of the unknown variables by Eq. (34).
ace, these results should also be compared with the results of
atch electrochemical reactor without electrolyte recirculation.
t can be seen that the best production of the desired compound
s obtained by the batch reactor with recirculation through a
eservoir followed in order by the best time-varying electrode
otential of batch reactor and static potential control of reactor
ith recirculation. Thus, using almost the same optimal con-

rol policy the production obtained for the case of batch with
ecirculation is considerably more than that of without recircula-
ion of electrolyte. This significant improvement in productivity
s caused due to the reactor system configuration that keeps
he electrolyte majority of the batch time in the reservoir. It
esults in the restriction of undesired electrochemical reduction
ue to less electrochemical reaction time, but with maximum
eactant depletion that would obviously results in maximum B.
n contrast, under batch electrochemical reactor without recir-
ulation the control of undesired product formation depends
ntirely on the optimal control policy. It is not aided by the
eactor system configuration and electrode–electrolyte contact
attern.

Unlike chemical kinetics a direct control over the reaction
elocities is attainable only in electrochemical reactions. This
an be best achieved by the use of time-varying electrode poten-
ial, even though the analogous optimum temperature progres-
ion in chemical reactor can have some control over reaction rate.
n contrast to chemical reactors, the dynamic manipulation of
oltage or current is much easier than temperature (or concentra-
ion, flow rate, pressure, etc.) and offers intriguing possibilities
or reaction engineering. The optimal, time-varying control of
otential or current can be used to achieve objectives other than
aximizing productivity; for example, the current efficiency or
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Fig. 5. Variation of dimensionless concentration on applying the: (a) best steady
potential; and (b) optimal time-varying potential in batch electrochemical reac-
tor.

selectivity can be maximized. Fig. 6 illustrates the qualitative
nature of the reaction velocities for the consecutive electrochem-
ical reaction scheme under kinetic control.

Thus, in the above investigation, the surface concentration
changes during the electrochemical process with the correct
objective function are accounted together with double layer
effect. Optimal profiles of the electrode potential are accord-
ingly realistic since the most important physical constraints are
considered. The simple mathematical analysis described above
can be carried out for other reactor systems to determine the best
reactor configuration for a given reaction system. If an electro-
chemical reactor configuration is described for the consecutive
electrochemical reactions, then the objective functional has to
be stated clearly with all governing material balances as con-
straints. It is an elegant approach that can lead to an improved
process control strategy.

Fig. 6. The electrochemical reaction rate curve for the consecutive electrochem-
ical reactions. (♦) Rate of disappearance of the reactant A, (�) rate of appearance
and disappearance of the desired product B, (�) rate of appearance of the unde-
sired product E.

5. Dynamic optimization of CSTER and PFER

The above development demonstrates how the optimal con-
trol theory can be applied to calculate the exact time-varying
electrode potential in batch electrochemical reactors. It is also
reasonable to look at the CSTER and PFER commonly known
as electrochemical flow cells. The dynamic modeling of the
former is comparatively simple as there is no spatial distribu-
tion of concentration within the reactor vessel as in the batch
electrochemical reactors. But, in the latter case we need to
account for the spatial concentration variation within the reac-
tor from the inlet to the outlet in addition to the dynamics.
These are considered as some realistic case for industrial scale
reactors.

5.1. CSTER

Consider a typical CSTER as shown in Fig. 2c, the pro-
posed formulation approach for CSTER is almost the same
as batch processes. The material balance for species A can be
written as:

VR
dCA

dt
= −kLAAe(CA − Cs

A)+ qCA0 − qCA (35a)

dCs
A s −α1fE s −β1fE s

I
i
o
s

dt
= kLAa(CA − CA)− kf10ae CA + kb10ae CB

(35b)

t can be noticed here that the terms describing flow of electrolyte
s the only difference between this case and batch reactor with-
ut electrolyte recirculation. Likewise, the case of CSTER in
eries is also not much difficult to formulate a dynamic problem
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since the number of ODEs governing a species behavior alone
multiplies. For example, if two CSTERs are connected in series
the component balance for A is

VR1

dCA1

dt
= −kLAAe(CA1 − Cs

A1
)+ qCA0 − qCA1 (36a)

dCs
A1

dt
= kLAa(CA1 − Cs

A1
)− kf10ae−α1fECs

A1

+kb10ae−β1fECs
B1

(36b)

VR2

dCA2

dt
= −kLAAe(CA2 − Cs

A2
)+ qCA1 − qCA2 (36c)

dCs
A2

dt
= kLAa(CA2 − Cs

A2
)− kf10ae−α1fECs

A2

+kb10ae−β1fECs
B2

(36d)

It is also possible to get the final converged trajectories of state,
adjoint and control variables by following the same computation
procedure. But, it may be needed to alter the default properties
of the ODEs solver performance according to the degree of dif-
ficulty and errors reports or stiffness if any.

5

b
a
c
f

w
s
w
c
o
m
n
T
o
o
p
v
o
p
r
o

changes that occur when the potential varies are negligible as
followed by Bakshi and Fedkiw [1].

6. Conclusion

A dynamic model of the batch electrochemical reactors with
and without electrolytic recirculation was designed using the
existing model equations. It is based on the dynamics in the
surface concentration of various reacting species and also the
double layer charging process. Thus, the scope of the work
is restricted far from the pseudocapacitance as it does not
have a major role in electrochemical synthesis. In this fash-
ion, the presented approach takes account of both Faradaic
and non-Faradaic processes in the statement of dynamic opti-
mization problem. The model was used for the dynamic opti-
mal control of batch electrochemical reactors for industrially
useful consecutive electrochemical reactions. In this the pri-
mary goal was to move toward a maximum concentration of
the desired product, as high as possible for a given reac-
tor and a secondary objective was to realize the extent pos-
sible concentration of the desired product using electrolyte
recirculation.

The formulation achieved in this paper encompasses not
only the polarizable and non-polarizable limits but also for the
various batch electrochemical reactors so that it is possible to
deduce from simple kinetic expressions the results of almost all
r
c
t
e

A

f
D
K

R

[
[

[

[

[
[

[

[

[

.2. PFER

The system under discussion is depicted in Fig. 2d. A mass
alance for component A on a length element δx of the reactor
t any time t > 0, noting that in this problem formulation the
oncentration is a function of both position and time, gives the
ollowing partial differential equation

∂CA

∂t
+ U

∂CA

∂x
= −kLAa(CA − Cs

A) (37a)

∂Cs
A

∂t
+ U

∂Cs
A

∂x
= kLAa(CA − Cs

A)− kf10ae−α1fECs
A

+kb10ae−β1fECs
B (37b)

here U is the average velocity of the electrolyte and ‘a’ is the
pecific electrode area. The PFR behavior can be approximated
ell by discretisation using orthogonal collocation. Such a dis-

retised model shows good accuracy because it is know that
rthogonal collocation preserves observability. Therefore, this
ethod is a suitable approach for the problem at hand. Alter-

ately, Maple’s pdsolve command can also enable the solution.
he pdsolve command currently recognizes a certain number
f PDE families that can be solved by using standard meth-
ds. When the given PDE belongs to an unrecognized family,
dsolve uses a heuristic algorithm that attempts separation of
ariables based on the specific structure of the PDE. But, the use
f pdsolve/numeric with these methods is restricted to a single
arabolic/hyperbolic linear PDE that is first orders in time. The
esultant partial differential equations may be solved rigorously
r approximately, by assuming that the transient concentration
eaction–reactor system of interest. Besides finding the optimal
ontrol policy, this paper has discussed few other aspects related
o the methodology of dynamic optimization in continuous flow
lectrochemical reactors.
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