
A novel approach for computing tertiary current distributions based on

simplifying assumptions

VIJAYASEKARAN BOOVARAGAVAN1,2 and C. AHMED BASHA1,*
1Central Electrochemical Research Institute, Karaikudi, Tamilnadu, 630006, India
2Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, 38505, USA
(*author for correspondence tel.:+91-4565-227550, fax:+91-4565-227713, E-mail: basha@cecri.res.in)

Received 10 June 2005; accepted in revised form 13 January 2006

Key words: convective transport, electrochemical cell, electrode kinetics, mathematical analysis, tertiary current
distributions

Abstract

A novel yet efficient method for the computation of simplified tertiary current density and surface concentration
distributions in electrochemical processes is presented. The method is rooted in the important physiochemical
property that the activation potential is constant and uniform for given electrode material during the electrolysis.
The technique is attractive because it involves a single iterative procedure against the conventional doubly iterative
procedure. The initial assumption of current distribution along the electrode is also not necessary, as it involves only
an assumption of a suitable power series to solve steady state laminar convective diffusion. Accordingly the method
is relevant only for electrodes of constant activation polarization, but this holds good for situations where the
electrode configurations are such that the primary current density distribution is almost uniform and for situations
where the Wagner number is high. To illustrate the utility of the technique the procedure is applied to some realistic
problems encountered in electrochemical engineering such as the current distribution either in plane-parallel plate
electrode with electrolyte flowing between them or a moving electrode with the electrolyte stationary.

1. Introduction

The knowledge of current distribution in various geo-
metrical configuration of electrolytic cells is important
both for the analysis of data obtained in electrochemical
experiments and also for design and scale-up. Owing to
the large number of variables, the nature of the problem
is complex. However, several situations for limited
validity can be analyzed with comparative ease such as
the primary and secondary current distributions. In
order to design a reactor and also to understand the
performance in this more complicated process, it is
essential to simultaneously take into account several
phenomena that influence the current distribution.
Thus, it is necessary to solve for the concentration fields
and the potential field simultaneously. The solution of
such problems is often termed the tertiary current
distribution. Since the mathematical methods leading
to an analytical solution are usually not applicable in
more complicated cases, the only possibility remaining is
to use a numerical or semi-analytical approach.
Tertiary current distributions have not been treated

extensively. Newman [1] has discussed this class of
problem, indicating how to treat current distribution in
cells where the potential distribution in the bulk of the
solution and the concentration distribution in the

diffusion layer must be calculated simultaneously. These
ideas [2] were applied to other electrochemical cell
geometries such as current distribution on plane-parallel
electrodes, rotating spherical electrodes, continuous
moving sheet electrodes etc., The computation methods
used in most of these cases are one or the other form of
Newman�s technique. Nowadays finite element or finite
difference methods provide an option to model electro-
chemical systems. In recent work [3–7] semi-analytical
methods or numerical methods have been used for
calculating current density distributions with respect to
diffusion, migration and laminar convection, including
high velocities and electrochemical reactions of expo-
nential kinetics.
In this work, the authors propose a new semi-

analytical method with minimum number of iterative
procedures and assumptions that are needed to repre-
sent the simplified tertiary current distribution.
Although the proposed technique for the computation
of tertiary current distribution brings in mind New-
man�s technique, this method involves a single iterative
procedure. Newman�s technique is double iterative and
also involves the initial assumption of current distribu-
tion itself. The technique is much simpler as it assumes
only an appropriate power series for surface concentra-
tion and makes use of the augmented Butler–Volmer
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equation for calculating the coefficients of the assumed
series. The basis of this evaluation is rooted in a strong
physiochemical fact that activation polarization remains
constant throughout the electrode surface.
Thus extent possible analytical expressions used

during the computation give much insight into the
system, which is one of the primary objectives of
modeling. Certainly the developed method is not a
solution for all problems but holds good within the
stated limitations.

2. Mathematical analysis

A simple model considered for the evaluation of tertiary
current distributions involves the following assump-
tions: (a) a single cathodic reaction takes place at the
cathode; (b) the concentration overpotential and the
activation overpotential at the counter electrode are
zero; (c) the transport and kinetic parameters do not
vary in space or time; (d) the presence of cell wall and
the counter electrode do not affect the flow boundary
layer on the working electrode; and (e) the physical
properties of the electrolyte are constant and the
cathode is of primary interest.

2.1. Voltage balance

Assuming that we impose a specific voltage drop E
across the electrodes; the overall voltage balance may be
written as

E ¼ /ohm þ ga þ gc ð1Þ

Here E is the difference between the applied cell
voltage and the thermodynamic equilibrium cell voltage.
/ohm is the ohmic voltage drop, ga and gc are the
voltage drops due to activation polarization (i.e., kinetic
effects) and concentration polarization (due to concen-
tration gradients between the electrode surface and the
bulk electrolyte) respectively.

2.2. Modified Butler–Volmer electrode kinetics

The polarization equation is necessary to express the
dependence of the local rate of the reaction on the
various concentrations and on the potential jump at the
interface. It is common to use the Butler–Volmer
equation of electrode kinetics of the form for metal/
ion systems.

i ¼ i0
Cs

C1

� �c

exp
anF
RT

ga

� �
� exp � bnF

RT
ga

� �� �
ð2Þ

where i0 is the exchange current density and a,b and c
are kinetic parameters.

2.3. Concentration overpotential

In view of the assumption of an excess of supporting
electrolyte the potential difference associated with the

concentration variation is written in terms of concen-
tration overpotential as commonly followed.

2.4. Convective diffusion

The diffusion process is governed by a partial differen-
tial equation that describes the way that the concentra-
tion of the electrochemically active species changes with
respect to the distance along the working electrode.
Then the steady-state laminar convective diffusion
equation, V ðrCÞ ¼ Dr2C is used to describe the
transport of the reactive ion from the bulk to the
electrode surface. The choice of spatial coordinate and
the boundary conditions depend on the electrode
geometry.

2.5. Laplace equation

In the interior of an electrolytic cell, there are no free
electrical charges. The ohmic potential drop across the
concentration boundary layer is negligibly small com-
pared to the ohmic potential drop across the bulk of the
electrolyte. Therefore, the potential drop across the
electrolyte is governed by the Laplace equation, r2/
where /(x,y) represents the local electrical potential.
Thus to determine the current density and concentra-

tion distributions along the electrode, the convective
diffusion equation and the Laplace equation must be
solved simultaneously along with electrochemical kinet-
ics using suitable geometry-dependent boundary condi-
tions. Thus there are five equations; these equations are
strongly coupled algebraic-differential equations and
simultaneous solution is required to find the unknowns
namely, activation polarization, concentration overpo-
tential, ohmic potential drop, surface concentration and
local current density at the electrode.

3. Semi-analytical method

Many electrochemical systems require common calcula-
tion procedures to analyze tertiary current distribution
irrespective of the cell geometry. The working electrode
may take a different position with respect to the counter
electrode such as a rectangular geometry where the
electrodes are parallel or through-hole plating where the
electrodes are perpendicular. The basic computation
methodology developed here is based on this constant
and uniform activation polarization property of the
electrode and power series solution assumption for
convective diffusion. The main principle of the calcula-
tion procedure, consists in assuming the series solution
for the surface concentration and in finding out the
expressions for evaluating the series coefficients. A
scaling of all parameters that appear in the problem
suggests that the results can be best presented in terms of
the dimensionless quantities.
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X ¼ x

L
; b� ¼ b

L
; C�s ¼

Cs

C1
; i� ¼ nF

RT

L

k
i

Q� ¼ nF

RT
Q; where Q ¼ ga; gc; /ohm; E

ð3Þ

The calculation procedure for the more general case
discussed in the previous section is presented below.
Introducing the dimensionless quantities into the gov-
erning model equations, we have
Voltage Balance

E� ¼ /�ohm þ g�a þ g�c ð4Þ

modified Butler–Volmer electrode kinetics

i� ¼ JC�s
c exp ag�a

� �
� exp �bg�a

� �� �
ð5Þ

The transfer coefficients a and b are usually 0.5. The
parameter c is the electrochemical reaction order and it
is 0.5. J is the dimensionless exchange current density
and represents the ratio of the ohmic potential drop to
the activation overpotential.
Concentration overpotential

g�c ¼ lnC�s ð6Þ

The analytical solution of the steady-state laminar
convective diffusion can be obtained in three steps.
(i) Apply Laplace transformation to convective dif-
fusion assuming that the velocity component for the
electrolyte along the y-direction is negligible; (ii)
Solve the resulting linear second-order ordinary
differential equation with the corresponding bound-
ary conditions of the given geometry; and (iii) Use
the convolution theorem and take inverse Laplace
transformation to get the complete solution. The
resulting expression that relates the variables surface
concentration and the local current density can be
expressed as

i�ðXÞ ¼ N

ZX

0

dC�s
dX

� �
X¼t

dt

ðX� tÞq ð7Þ

where t is a dummy variable, q is a geometric factor and
can have any value smaller than one ( 0<q<1). It is
heuristic, but appropriate if we choose the value based
on the analytical expression of concentration field. For a
semi-infinite plate q=0.5, for a parallel plate or flow
through pipe q=1/3 (Leveque type equation) and for
turbulent flow q=0.8 (Wilson type plot). N is a
significant parameter called the average dimensionless
limiting current density. Both q and N depend upon the
cell geometry and the corresponding boundary condi-
tions used. The dimensionless form of the Laplace
equation can be written as

r2/� ¼ 0 ð8Þ

The effect of surface concentration on the reaction
rate plays an important role in many electrochemical
systems [8–10] such as batteries and electrochemical
synthesis. To solve this system of equations (Eqs. (4)–

(8)), we have stated with the assumption of a power
series for the surface concentration as follow:

C�s ¼
X1
n¼0

anX
nq ð9Þ

Using the condition Cs(0)=C¥ i.e., the bulk concen-
tration of the reacting species, the series coefficient
a0=1.0. Taking the first derivative of Eq. (9) with
respect to X, the current density distribution can also be
expressed in terms of an assumed power series using Eq.
(7)

i�ðXÞ ¼ N
X1
n¼1

nanqX
ðn�1Þqb 1� q; nqð Þ ð10Þ

The modified Butler–Volmer electrode kinetics can be
equated to the above series equation. The resulting
expression is then used to calculate the numerical value
of the other series coefficients. The expression is

JC�s
c exp ag�a

� �
� exp �bg�a

� �� �

¼ N
X1
n¼1

nanqX
ðn�1Þqb 1� q; nqð Þ

ð11Þ

or

J
X1
n¼0

anX
nq

" #c

exp ag�a
� �

� exp �bg�a
� �� �

¼ N
X1
n¼0
ðnþ 1Þanþ1qXnqb 1� q; ðnþ 1Þqð Þ

ð12Þ

The procedure for evaluating series coefficients and
thus the concentration and current distributions is
detailed in the Appendix for the case of a continuous
moving sheet electrode process. Figure 1 illustrates the
technique in more detail. Despite the nested iterations,
the convergence is very rapid. The major differences and
advantages of this procedure are
1. The developed method involves iteration for only

one variable instead of doubly iterative calculation
procedure used in the conventional methods.

2. The assumption of a power series solution for C�s
alone is required in the present method unlike the
initial guess of the current distribution itself.

3. Above all, the developed technique will open up the
possibilities of modeling systems with irregular
geometry, unusual boundary conditions or multi-
ion electrodeposition.
The second striking feature enables a very simple

programming need for this methodology. This capabil-
ity becomes very important because, if the tertiary
current distribution is the main issue, the assumption of
current density distribution can produce coding intri-
cacy and conspicuous errors. However, the method is
still restricted to constant and uniform electrode mate-
rial activation polarization. These features should also
be taken into consideration for the applicability of the
above semi-analytical method.
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The above method computes simplified tertiary cur-
rent density and surface concentration distributions. For
example the migration contribution to the transport
mechanism of the reacting (and other) species has been
ignored for adaptability purposes of the semi-analytical
technique. However, the migration contribution may
become important in not so dilute solutions and inside
occluded geometries such as cavities, crevices, through
holes, etc. In such cases Laplace�s equation cannot
accurately define the ohmic drop, the migration term
that combines concentration and solution potential
interactions should be included in the transport equa-
tion and, due to its strong non-linearity, only a
numerical solution is feasible. Also it is not possible to
catch edge effects on downstream electrode edges where
singularities occur. Plating through holes requires sim-
ulation of the moving boundary developed at the plating
electrode surface; but the present method attempts to
attack a very complicated process with a rather basic
approach. The case of plating through holes is an
example of the necessity of a numerical approach. The
other restrictions include that the method can hold well

only when the convection is in the x and diffusion in the
y and constant diffusivities. The method can also be
easily extended even for other semi-analytical solutions
[4] in the case of non-analytical solutions for the
potential distribution. Also the method can handle
well-defined non-constant velocities as long as the
Laplace transform technique works. Thus, the numer-
ical procedure addresses coupled phenomena for all
ranges of simplified electrochemical systems. However,
the applicability of the semi-analytical method is
restricted for simulations of the changing current
distribution and resulting electrode shape change in
the transient problems. On the other hand, cases
involving multiple species can be simulated based on
the mass conservation equation.

4. Results and discussion

The proposed approach is general and, under the fitness
of the mathematical formulation described in Section 2,
the technique accounts for all possible configurations
and operational alternatives of the electrochemical
system. In the following section, the ease of use and
the broad applicability of the presented algorithm are
illustrated in three different electrochemical processes.
The results are presented by solving the problems in
terms of different dominant parameters.

4.1. Continuous moving sheet electrode

Electrochemical processes such as electrolysis of brine
and electroplating of sheet metals and wires [11] make
use of continuous moving electrodes. Consider one side
of a continuous semi-infinite flat sheet electrode mov-
ing with a constant velocity Us, through an otherwise
undisturbed electrolyte as shown in the Figure 2. The
sheet enters the cell through a watertight slot at one
end of the cell and leaves the cell at the opposite side
through a second slot. The motion of the solid surface
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Fig. 2. Schematic diagram of a continuous moving sheet electrode
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Fig. 1. Outline of the developed algorithm used to solve model

equations.
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induces a flow of electrolyte in the direction of the
sheet. The electrode velocity is high so that the
boundary layer approximation can be used to describe
the electrolyte flow near the surface. The steady-state
laminar convective diffusion equation for a continuous
moving sheet is

U
@C

@x
þ V

@C

@y
¼ D

@2C

@y2
ð13Þ

The boundary conditions at the walls, the anode
(y=b) and the cathode (y=0) are C(0, y)=C(x, ¥)=C¥

D
@Cðx; yÞ
@y

				
y¼0
¼ iðxÞ

nF
ð14Þ

Assuming that the variation in V is negligible and
applying Laplace Transformation (i.e., x to p in C), the
complete solution of Eq. (13) using the above boundary
conditions is

Cðp; 0Þ ¼ Ca

p
� 1

nF
ffiffiffiffiffiffiffiffi
DU
p iðpÞffiffiffi

p
p ð15Þ

Using the convolution theorem, the inverse Laplace
transform of Eq. (15) gives the surface concentration
or the local current density distribution along the
surface of the continuous moving sheet electrode,
expressed as

Cðx; 0Þ ¼ C1 �
1

nF
ffiffiffiffiffiffiffiffiffiffiffiffi
pDUs

p
Zx

0

iðtÞffiffiffiffiffiffiffiffiffiffiffi
x� t
p dt ð16Þ

or

iðxÞ ¼ nF

ffiffiffiffiffiffiffiffiffi
DUs

p

r Zx

0

dC

dx

� �
x¼t

dtffiffiffiffiffiffiffiffiffiffiffi
x� t
p ð17Þ

Introducing the dimensionless parameter Eq. (3) into
the above equation, the resulting expression for the
variable surface concentrations at the electrode is

i�ðXÞ ¼ N

ZX

0

dC�s
dX

� �
X¼t

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� tÞ

p

¼ N
X1
n¼1

n

2
anX

n�1
2 b

n

2
;
1

2

� �
ð18Þ

where

N ¼ �n
2F2DC1
RTk

ffiffiffi
p
p

ffiffiffiffiffiffiffiffiffiffiffi
ReSc
p

¼ 2
ffiffiffiffi
X
p

p

Z1

0

i�limdX

Here the assumed series solution for C�s is

C�s ¼
X1
n¼0

anX
n
2 ð19Þ

The following boundary conditions are used to solve the
potential field expressed by the Laplace equation,

@/
@x
¼ 0 at x ¼ 0 and x ¼ 1 for 0 � y � b ð20aÞ

/ ¼ 0 at y ¼ b for 0 � x � L ð20bÞ

@/
@y
¼ �i

k
at y ¼ 0 for 0 � x � L ð21Þ

The Laplace equation have been solved by the method
of separation of variables using the above boundary
conditions and the solution for the ohmic potential drop
across the cell is expressed in terms of a Fourier cosine
series.

/�ohm ¼ b�
Z1

0

i�dtþ
X1
m¼1

2

mp
tan hðmpb�Þ cosðmpXÞ

Z1

0

i� cosðmptÞdt ð22Þ

The governing equations describing an electrochem-
ical process at the moving electrode are given in
Table 1 and simulation data are reported in Table 4.
Here Re and Sc are Reynolds and Schmidt number,
respectively. In addition, the dimensionless parameters
N, J and b* are subjected to variation to examine their
influence. The dimensionless average limiting current
density N, represents the ratio of ohmic potential drop
to the concentration overpotential at the electrode.
The model equations are solved numerically. Fig-

ure 3a shows the current distributions at various
current levels for N=100, J=1 and b*=1. The
vertical axis is the local current density divided by
the average current density at the electrode. The
horizontal axis is the dimensionless surface distance
from the entrance point of the moving electrode. It is
seen that at a low current level the current distribu-
tion profile is almost flat. This is because the
concentration polarization is small due to negligible
mass-transfer resistance. As the current increases, the
profile has a pronounced steep region near the
leading edge and linearly drops thereafter. The
current density is highest at the leading edge where
the concentration boundary layer is thin and the rate
of mass transfer is high. Then the concentration
boundary layer grows gradually from the leading
edge and the current density decreases. At the
trailing edge, the effect of the concentration bound-
ary layer is greater and the current density becomes
less than the average value.
Figure 3b presents the surface concentration profiles

for different currents. The concentration effects increase
with current density due to mass transfer limitations.
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The surface concentration is equal to the bulk concen-
tration at the leading edge and decreases sharply with
increasing distance along the electrode. The surface
concentration distribution is most uniform for the
smallest current. Figure 4a shows the effect of average
dimensionless limiting current density, N, on the current
distribution at J=100 and b*=1. For large values of N,
the current densities exceed the limiting current density
locally near the leading edge as the mass transfer
proceeds faster and the current distribution becomes
more uniform. The other dimensionless parameter, the
exchange current density, is not so important because
the numerical investigation on different values of J
ranging from 0.001 to 100 indicates that, for large values
of N, the effect of J is smaller; in general for more uniform
current distribution the value of J should be smaller.
The next stage of the analysis for uniform current

density distribution is to study the effect of electrode
spacing at the continuous moving electrode. Figure 4b
shows that the current density becomes more uniform as
the value of b* increases. But increase in b* poses the
question of economic viability; the effect is more
pronounced when N is large. Thus for uniform current
distribution, b* can be increased for low values of N.
However, for very low values of N, the process tends to
be mass transfer limited. Model equations give a better
solution for the system with N greater than 200. This
condition of large N is imposed by low electrolytic
conductivity and high limiting current density. Most
industrial electrochemical processes are carried out
under this condition of large N. In electrowinning of
copper-containing minerals the acidic copper sulfate
bath contains 0.75 M CuSO4 and 1 M H2SO4 with a
specific conductivity of 0.4 mho cm)1 [12] at room
temperature. Thus for a cell 4 m long and with sheet
velocity 0.026 m s)1, the value of N for copper deposi-
tion is 1610 at 25 �C.

4.2. Electroplating of a through-hole

We now consider the electroplating of high aspect ratio
through-holes as shown in Figure 5. Plating inside
through-holes and crevices is critically important for

innumerable technological applications [13]. High-
density circuits require thicker boards with longer,
smaller diameter holes. These trends make it difficult
to achieve uniform plating due to severe mass-transfer
limitations [14]. The steady-state diffusion equation for
laminar convective diffusion in circular cylindrical
coordinates can be written as

VzðrÞ
@C

@z
¼ D

@2C

@r2
þ 1

r

@C

@r

� �
ð23Þ

Here r and z are radial and axial distances. For small
values of z such that zD=2hVziR2

0<0:01, Leveque [15]
recognized that there is a diffusion layer near the tube
wall where the second term in the brackets of Eq. (23)
becomes much smaller than the first and the electrolyte
velocity is approximately linear with distance from the
tube wall. By inserting these approximations into Eq.
(23), one obtains

VzðyÞ
@C

@z
¼ D

@2C

@y2
where VzðyÞ ¼

4hVzi
R0

y

where y is the normalized radial distance from the
through-hole wall y=(R0)r) and ÆVz æ is the average
electrolyte velocity in the axial direction. Under these
situations the boundary conditions are

C ¼ C1 at y ¼ 1 for z0

C ¼ C1 at 0 � y � 1 for z � 0

@C

@y
¼ iðzÞ

nFD
at y ¼ 0 for 0 � z � L

ð24Þ

The resulting expression for surface concentration and
average dimensionless limiting current density is

i� ¼ N

ZX

0

dC�s
dX

� �
X¼t

dtffiffi
½

p
3�x� t

¼ N
X1
n¼1

n

3
anX

n�1
3 b

n

3
;
2

3

� �

ð25Þ

N ¼ 2n2F2DC1L
2

C 4
3

� �
RTkR0

4hVzi
9R0DL

� �1
3

Table 1. Simplified model equations for moving electrode process

Moving electrode process

Voltage balance E� ¼ /�ohm þ g�a þ g�c

Electrode kinetics i� ¼ JC�s
c exp ag�a

� �
� exp �bg�a

� �� �
where J ¼ nFL

RTk i0

Concentration overpotential g�c ¼ lnC�s

Ohmic potential drop /�ohm ¼ b�
R1
0

i�dt þ
P1
m¼1

2
mp tan hðmpb�Þ cosðmpX Þ

R1
0

i� cosðmptÞdt

Convective diffusion i�ðX Þ ¼ N
RX
0

dC�s
dX

� �
X¼t

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � tÞ

p ¼ N
X1
n¼1

n
2
anX

n�1
2 b

n
2
;
1

2

� �

where N ¼ �n2F 2DC1
RTk

ffiffiffi
p
p ffiffiffiffiffiffiffiffiffiffiffi

ReSc
p

¼ 2
ffiffiffi
X
p

p

R1
0

i�limdX ,

Re ¼ U sL
m & Sc ¼ m

D
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In Eq. (25) X=y/L, the dimensionless through-hole
axial distance. The polynomial series solution assumed
for the dimensionless surface concentration is

C�s ¼
X1
n¼0

anX
n
3 ð26Þ

The Laplace equation is solved using the following
boundary conditions

@/
@r
¼0 at z¼0 andz¼L for 0�r�R0

@/
@r
¼�iðzÞ

k
at 0<z<Land r¼R0

ð27Þ

The analytical expressions in Table 2 describe mass
transfer of reacting species, ohmic resistance in the
electrolyte phase and charge transfer at the through-hole
wall. Here I0 and I1 are modified Bessel functions.
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Fig. 3. (a) Current density distribution on the moving sheet electrode at various current levels and (b) Typical profiles of dimensionless sur-

face concentration distribution on the continuous moving sheet electrode.
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Typical electrolyte, kinetic, mass transfer and geometric
parameters encountered during copper deposition are
given in Table 4. The through-hole dimensions investi-
gated correspond to aspect ratios of 10:1, 5:1 and 2:1.
We assume symmetry of anode position and agitation
on both sides of the board.
Figure 6a is the graphical representation of calculated

dimensionless surface concentration distributions at
various levels of polarization for the aspect ration 2:1
(L=0.8 cm, R0=0.2 cm), where the local current den-

sity is non-dimensionalized with respect to the average
current density, iavg. At relatively low values of applied
potential, the current distribution depends on the cell
geometry, the charge transfer characteristics of the
electrochemical reaction and the electrolyte conductiv-
ity. As the applied potential is increased, the solution
inside the through-hole becomes depleted in the reacting
species. Consequently, the edges of the through-hole are
more accessible to the counter electrode and are
constantly being supplied with the reacting species. This
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Fig. 4. (a) Effect of N on the current distribution for J=b*=1.0 and (b) Effect of electrode spacing on the current distribution at the contin-

uous moving electrode.
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causes the current distribution to become increasingly
non-uniform, as shown in Figure 6b.
As the through-hole radius becomes smaller and the

aspect ratio becomes higher, the more acute the problem
will be. At relatively low values of applied potential, the
current distribution will become more non-uniform with
decreasing hole radius due to geometric considerations.
At high-applied potentials this trend will continue
because of the increase in mass-transfer restriction with
decreasing hole radius. This is illustrated in Figure 6c
for through-holes with aspect ratio 2:1 (L=0.8 cm,
R0=0.2 cm), 5:1 (L=0.8 cm, R0=0.08 cm) and 10:1
(L=0.8 cm, R0=0.04 cm).

4.3. Plane-parallel electrodes

Because of the importance of parallel electrodes, a great
deal of effort has been devoted to describing the current

Table 2. Simplified model equations for through-hole plating process

Through-hole plating process

Voltage balance E� ¼ /�ohm þ g�a þ g�c

Electrode kinetics i� ¼ JC�s
c exp ag�a

� �
� exp �bg�a

� �� �
where J ¼ 2nFL2

RTkR 0
i0

Concentration overpotential g�c ¼ lnC�s

Ohmic potential drop /� nð Þ ¼ /� �
Pa
n¼1

sinðknnÞ ‘
np

I0ðkn‘Þ
I1ðkn‘Þ

R1
0

i�ðnÞ sinðknnÞdn

" #

where ‘ ¼ R0

L and kn ¼ np

Convective diffusion i� ¼ N
RX
0

dC�s
dX

� �
X¼t

dtffiffi
½

p
3�x� t

¼ N
X1
n¼1

n
3

anX
n�1
3 b

n
3
;
2

3

� �

where N ¼ 2n2F 2DC1L2

C 4
3ð ÞRTkR0

4hV zi
9R0DL

� �1
3

Table 3. Simplified model equations for plane-parallel electrode process

Plane-parallel electrode process

Voltage balance E�cath ¼ /�ohm;cath þ g�a;cath þ g�c;cath

Electrode kinetics i�cath ¼ JC�s
c exp ag�a;cath

� �
� exp �bg�a;cath

� �h i
where J ¼ nFL

RTk i0

Concentration overpotential g�c;cath ¼ lnC�s � tð1� C�s Þ

 �

Ohmic potential drop /�ohm;cath ¼ /� � 1
2p

R1
0

i�cath ln sin h2 pb�ðX�tÞ
2

h i
þ i�anode ln cos h2 pb�ðX�tÞ

2

h in o
dt

Convective diffusion i� ¼ N
RX
0

dC�s
dX

� �
X¼t

dt

X � tð Þ
1
3

¼ N
X1
n¼1

n
3
anX

n�1
3 b

n
3
;
2

3

� �

where N ¼ �n2F 2DC1
ð1�tÞRTk

1
C 4

3ð Þ
2hUiL2

3Db

� �1
3

Table 4. Physicochemical and kinetic parameters employed in model simulation

Parameter Symbol Value References

Conductivity of bulk solution j 0.4 mho cm)1 [2]

Diffusivity of copper D 5.2� 10)6 cm2s)1 [2]

Cathodic transfer coefficient b 0.5 [2]

Anodic transfer coefficient a 0.5 [2]

Electrochemical reaction order c 0.5 [2]

Cell temperature T 303 K [2]

Exchange current density i0 1.0 mA cm)2 [2]

Bulk concentration of reactant C¥ 1.0 mol cm)3 [2]

Electrons produced/reactant ion n 2 [2]

Cell geometry dependent constant q 0<q<1 –

Universal gas constant R 8.314 J mol)1K)1 –

Faraday�s constant F 96,487 C mol)1 –

Z = L/2D

r

Z

Counter Electrode

Counter Electrode

Z = 0

Z = L

Well Mixed

Well Mixed
W

or
ki

ng
 E

le
ct

ro
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W
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lectrode

Fig. 5. Definition sketch of a through-hole system under consider-

ation.
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distribution [16–18]. We consider the flow between
planar electrodes in the walls of a flow channel as
shown in Figure 7. The boundary conditions at the
insulating walls and at the anode (y=b) are the same as
in earlier cases, while the boundary conditions at the
cathode (y=0) is

@C

@y
¼ i

nFD
at y ¼ 0 for 0<x<L ð28Þ

Using the same series solution assumption Eq. (26),
the resulting equation for the surface concentration is

i� ¼N

ZX

0

dC�s
dX

� �
X¼t

dtffiffi
½

p
3�X� t

¼N
X1
n¼1

n

3
anX

n�1
3 b

n

3
;
2

3

� �

ð29aÞ

where

N ¼ n2F2DC1
ð1� tÞRTk

1

C 4
3

� � 2hUiL2

3Db

� �1
3

ð29bÞ

For this geometry the Laplace equation is subjected to
the following conditions

@/
@y
¼ 0 at y ¼ 0 for x<0& xL ð30Þ

@/
@y
¼ �i

k
at y ¼ 0 for 0<x<L ð31Þ

The model equations describing the cathode process
are given in Table 3 and the simulation data in Table 4.
To calculate the current density and concentration
distributions on the two electrodes, two sets of five
equations must be solved simultaneously along with the
equality condition for anodic and cathodic current
density distributions. The total current flowing through
the reactor is given by

Z1

0

i�cathðXÞdXþ
Z1

0

i�anodeðXÞdX ¼ 0 ð32Þ

A design procedure can be readily set up for the above
system. The parameters to be specified are N, J, b* along
with kinetic parameters. The current distributions are
then determined for various applied voltages. But here
in this particular case, this should to be done for both
anode and cathode, so that the iteration continues until
Eq. (32) is satisfied. This is done by running the

Cathode

Anode

L

b<V>
Y

X

Fig. 7. Location of the plane-parallel electrodes on the walls of flow

channel.
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Fig. 6. (a) Calculated surface concentration distributions within a
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hole at various levels of polarization; and (c) Dependence of the cur-

rent density distribution on the through-hole geometry, R0/L.
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algorithm separately one anode and cathode and verify
in the validity of Eq. (32) at the output level. The
limiting current occurs when the current distribution is
limited by mass transfer through the diffusion layer and
is given by

i�lim ¼
N

X1=3
ð33Þ

Figure 8a shows the current distribution for N=100
and J=8p (this corresponds to Wagner parameter 4p)
at various fractions of the limiting current; also shown
is the limiting current density profile. Near the front
of each electrode, the current drops rapidly, behaving
like a secondary current distribution. However on the
cathode, mass transfer effects become more important
with increasing x/L. The concentration profiles for the
cathode are shown in Figure 8b, the cathodic current
cannot continue to behave like a secondary current
because the reactant concentration has been reduced
inside the diffusion layer. But concentration effects are

relatively unimportant on the anode, and the anodic
current continues to resemble a secondary current
distribution. The interaction between the two elec-
trodes through the Laplace equation is very apparent
for the case of h/L=0.5. This behavior is caused at
very high current density due to rapid depletion of
reactant. However, after the current has dropped, the
concentration decreases again. A similar but opposite
behavior occurs on the anode as shown in Figure 9a
and 9b. A comparison of anodic and cathodic current
distributions is in harmony with the observation that
large values of conductivity, and hence small values of
N and i�avg, mean that the electrodes behave indepen-
dently since they are coupled only through the ohmic
potential drop. It is also found that, at a given
fraction of the limiting current, the current distribu-
tion becomes less uniform with increasing N. For an
infinite value of conductivity, the problem is similar
to one of mass transfer and non-electrochemical
catalysis.
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Fig. 9. (a) Comparison of anodic and cathodic current distributions

and (b) Surface concentration distribution on the anode.
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5. Conclusion

A semi-analytical method that calculates the simplified
tertiary current density distribution and concentration
profiles of an electrochemical cell is presented. The
method requires only an assumption of appropriate
power series to solve for steady state laminar convective
diffusion. Moreover, within the context of its limitations
this computational method can be extended to treat
various cell operational modes. Three test problems
from classical electrochemical engineering are solved
and discussed. The results are shown as functions of
various current levels and electrode positions. Profiles of
surface concentration and current density distribution
on the electrode are computed by considering concen-
tration polarization, activation polarization and ohmic
potential drop in the electrolyte. The method for solving
the governing equations utilizes the analytical solution
to the maximum possible extent.
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Appendix

The series solution assumption for the surface concen-
tration on the continuous moving sheet electrode
process is

C�s ¼
X1
n¼0

anX
n
2 ðA� 1Þ

For this case Eq. (18) reads (here q=1/2 & a0 =1.0)

i� ¼ N

ZX

0

dC�s
dX

� �
X¼t

dtffiffiffiffiffiffiffiffiffiffiffi
X� t
p ðA� 2Þ

Using Eq. (A-1), we have from Eq. (A-2) that the local
current density can be expressed in series form as

i� ¼ N
X1
n¼1

n

2
anX

n�1
2 b

n

2
;
1

2

� �
ðA� 3Þ

Equation (5) reads

i� ¼ JC �s
c exp ag�a

� �
� exp �bg�a

� �� �
ðA� 4Þ

Equating Eqs. (A-3) and (A-4) and then again equating
the like terms of X we get expressions to evaluate the
series coefficients.

J
X1
n¼0

anX
n
2

" #c

exp ag�a
� �

� exp �bg�a
� �� �

¼ N
X1
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n
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anX

ðn�12 Þb
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2
;
n

2

� �

a1N
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2
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1

2
;
1

2
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¼ JYac

0 ðA� 5Þ

a2N
1

2
b 1;

1

2
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¼ cJYac�1

0

a1
2

ðA� 6Þ

a3
3N

2
b

3

2
;
1

2
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¼ cðc� 1ÞJYac�2

0

a1
2
þ cJYac�1

0

a1
2

ðA� 7Þ

a4
3N

2
b 2;

1

2

� �
¼ cðc� 1Þðc� 2ÞJYac�3

0

a31
8

þ 2cðc� 1ÞJYac�2
0

a2
2

þ cðc� 1ÞJYac�1
0

a1
2

a2
2
þ cJYac�1

0

3a3
4

ðA� 8Þ

where Y ¼ � expðag�aÞ � expð�bg�aÞ

 �

. Assuming a
value for activation polarization, the surface concen-
tration can be calculated at any given position on the
electrode using Eqs. (A-5) to (A-8) and a0=1.0, this is
a series evaluation. The corresponding local current
density distribution is calculated from electrode kinet-
ics Eq. (A-3). The concentration overpotential can be
calculated from the Eq. (6). Next, using the evaluated
current density, the ohmic potential drop can be
computed from the analytical solution of the Laplace
equation derived for the respective geometry. Next,
with all the overpotentials in hand, the cell potential
E* is calculated based on the output from the initially
guessed activation overpotential. If the absolute value
of the relative percent difference between the calcu-
lated and specified cell potential is greater than the
specified tolerance (10)4) then the activation polari-
zation is adjusted and the procedure repeated until
convergence.
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