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bstract

CoO anode, as an alternate to the carbonaceous anodes of lithium-ion cells has been prepared and investigated for electrochemical
harge–discharge characteristics for about 50 cycles. Artificial neural networks (ANNs), which are useful in estimating battery performance,
as been deployed for the first time to forecast and to verify the charge–discharge behavior of lithium-ion cells containing CoO anode for a total of
0 cycles. In this novel approach, ANN that has one input layer with one neuron corresponding to one input variable, viz., cycles [charge–discharge
ycles] and a hidden layer consisting of three neurons to produce their outputs to the output layer through a sigmoid function has been selected
or the present investigation. The output layer consists of two neurons, representing the charge and discharge capacity, whose activation function

s also the sigmoid transfer function. In this ever first attempt to exploit ANN as an effective theoretical tool to understand the charge–discharge
haracteristics of lithium-ion cells, an excellent agreement between the calculated and observed capacity values was found with CoO anodes with
he best fit values corresponding to an error factor of <1%, which is the highlight of the present study.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

Batteries are highly non-linear devices for which there are
o simple and accurate physical models available to predict
he underlying complex phenomena, such as reaction mecha-
ism, charge–discharge behavior, cycle life, capacity retention,
tc. Basically, mathematical models of physical systems are
onstructed to facilitate our understanding of mechanisms that
ead to specific responses and to enable response predic-
ions. This creates the need for prediction tools that provide
sers with useful information such as remaining working time,
vailable energy at every desired time of operation, etc. In
his regard, the artificial neural networks (ANNs), one of the

ost powerful modeling techniques with very quick return for
he practice could be explored as a possible tool to predict

he charge–discharge characteristics of rechargeable batteries.
ecause, ANNs play a vital role in analyzing and predicting

he behavior of systems that cannot be described by any ana-
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ytical equations. Towards this direction, the ANNs have been
pplied to model certain complicated processes related to the
eld of engineering, viz., aerospace, automotive, electronic,
anufacturing, robotics, telecommunication, etc. ANN method

s now almost a standard modeling technique based on statistical
pproach. Particularly, ANN is an inductive or data-based model
or the simulation of input/output mappings. One of the distinct
haracteristics of the ANN is its ability to learn from experi-
nce and examples and to get adapted with changing situations
ccordingly.

In recent years, multivariate methods and ANNs are used to
redict the capacity behavior of lead-acid batteries [1–7] alone,
herein literature is replete with reports on the modeling and
rediction of characteristics of lead-acid batteries [8]. In this
egard, ANNs have been used to predict capacity and power
6,9], gust effects on a grid-interactive wind energy conversion
ystem with battery storage [10], cycle life and failure mecha-
ism of lead-acid system [11]. On the other hand, ANN has been

eployed for the first time to understand and to predict possibly
he rechargeable lithium-ion cell charge–discharge charac-
eristics through the present study. Since there are no reports
n the modeling and prediction of charge–discharge behavior
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f lithium-ion cells, it is aimed through the current study to
xploit the same for a lithium-ion system containing CoO
node.

It is well known that the problems associated with the
eployment of existing category lithium battery anodes such
s graphite/carbonaceous anodes [12], tin-based oxides [13],
etal–metal alloys [14], ternary metal borides, silicides and

itrides [15,16], etc., have placed greater emphasis upon the
eed to identify certain novel/alternate anodes ultimately. As a
esult, new class of metal oxide [17] and vanadate anodes [18]
re being investigated off late and among the variety of 3d-
etal oxide anodes, CoO anode has been chosen for the present

tudy, based on our earlier investigation [19]. Further, the exper-
mental results obtained from the charge–discharge analysis of
i/CoO half cells containing an electrolyte made up of 1:1 (v/v)
C:DEC dissolved in 1 M LiPF6 were compared with the pre-
icted values of ANN with a view to understand the possibility
f arriving at the best fit values ultimately. Also, the study high-
ights on the possibility of exploiting ANN technique to predict
he charge–discharge capacity values of Li/CoO half cells with
he lowest error value (<1%).

.1. Methodology of modeling/artificial neural network

Artificial neural network modeling is essentially a ‘black box’
peration linking input to output data using a particular set of
on-linear basis functions. ANNs consist of simple synchronous
rocessing elements, which are inspired by biological nervous
ystems [20] and the basic unit in the ANN is the neuron [21].
NNs are trained using a large number of input data with corre-

ponding output data (input/output pairs) obtained from actual
easurement so that a particular set of inputs produces, as nearly

s possible, a specific set of target outputs. Training consists of
djusting the weight associated with each connection (synapse)
etween neurons until the computed outputs for each set of data
nputs are as close as possible to the experimental data out-
uts. It is well known that during the design and training of
NNs, factors such as (i) architecture of the ANN; (ii) train-

ng algorithm; and (iii) transfer function need to be considered
ventually.

The term “architecture of the artificial neural network” refers
o the number of layers in the ANN and the number of neurons
n each layer. In general, it consists of an input layer, one or more
idden layers and one output layer. The number of neurons in
he input layer and the output layer are determined by the num-
er of input and output parameters, respectively. In order to find
he optimal architecture, number of neurons in the hidden layer
as to be determined (this number will be determined based on
he ANN during the training process by taking into consider-
tion the convergence rate, mapping accuracy, etc.). The most
idely used network type is multi-layered feed-forward network

22,23] trained with the back-propagation learning algorithm
24–34]. The BPN algorithm is based on the selection of a suit-

ble error function, whose values are determined by the actual
nd predicted outputs of the network. The model with lowest
rediction error is being used as the final and optimal model.
he activation function of a neuron is defined as the sum of the

c
b
p
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eighted input signals to that neuron:

etj = ΣWijXi

here Wij is the weight-connection to neuron j in the current
ayer from neuron i in the previous layer and Xi is the input
ignal of neuron. The Netj of the weighted inputs is transformed
ith a sigmoid transfer function, which is used to get the output

evel. This function is as follows:

j = 1

1 + e−Netj

here yj is the output of neuron j. Generally, the root mean
quared error (RMSE) is used as the error function for finalizing
he training and testing process [23]. The goal of training a net-
ork is to change the weights between the layers in a direction

hat minimizes the error E:

=
[

1

n(ΣpΣk(ypk − tpk)2

]0.5

he error E of network is defined as the squared differences
etween the target values ‘t’ and the outputs ‘y’ of the output
eurons summed over p training patterns and k output nodes.

With this background, the study deals with the possibility of
eploying ANN technique for lithium-ion battery performance
rediction, via comparison of predicted and observed specific
apacity values of lithium-ion cells containing CoO anodes upon
xtended charge–discharge cycling process.

. Experimental method (synthesis of CoO) and method
f approach (ANN)

.1. Preparation of CoO anode

The compound CoO selected for the present investigation was
ynthesized via thermal decomposition of CoCO3 at 850 ◦C. A
eighed amount of CoCO3 powder was heated inside a tubu-

ar furnace at a temperature of 800 ◦C in an atmosphere of
owing argon. Generally, the synthesis of CoO is reported to
ssociate with common impurities of Co3O4 and so the process
f high-temperature calcination was carried out under the influ-
nce of argon gas flow. Also, the precursor mixture kept inside
he furnace was subjected to a process of intermittent grinding
t least twice, i.e., at the end of every 6 h, to ensure reaction mix-
ure homogeneity and phase purity of the formed final product.
gain, the process of heating was extended for another 3 h, espe-

ially to obtain CoO with maximum purity and stability by way
f expelling the CO2 gas completely from the selected carbonate
recursor. Also, the post heat treatment after 12 h is expected to
xclude the co-existence of trace amounts of cubic Co3O4 from
he final product thoroughly. The compound CoO obtained as
ltra fine powders at the end of 15 h. heat treatment in argon gas
ow was subjected further to electrochemical characterization,
iz., charge–discharge studies.
The anode electrode was prepared by coating a slurry that
ontained a mixture of synthesized metal oxide powder (80%
y weight), carbon (10%) and PVdF binder (10%) over a cop-
er foil and the details pertinent to the same are mentioned
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lsewhere [35] Further, laminated pouch cells of 6 in. × 4 in.
imensions were fabricated and subjected to charge–discharge
ycling studies at a constant current (C/10) rate.

.2. ANN training approach: (software development)

Generally, steps to be followed to develop an ANN model
re: (i) database collection; (ii) analysis and pre-processing of
he data; (iii) training of the ANN; (iv) test of the trained network;
nd (v) use of the trained ANN for simulation and prediction.
ccordingly, data obtained by experimental measurement of
oO/Li cells were split into two data sets, one of which is a

raining set and the other is the test set.
In the present ANN model, the input layer has one neuron

charge–discharge cycles), the hidden layer has three neurons
training data selection method) and the output layer has two
eurons such as Qdc and Qc (Qdc = discharge capacity and
c = charging capacity). With initial random weight, learning

ate and momentum values, preprocessed training data was
pplied to the BPN network and the optimal number of neu-
ons in the hidden layer was determined. Training was stopped,
hen the prediction error was found to be the lowest. The objec-

ive of the training procedure is to find a set of possible weights
hat permit the network to estimate/predict the ANN output, in
rder to minimize the error. ANN model with the lowest pre-
iction error was used as the final and optimum model. Using
hese optimum values, the network was tested for the unknown
test) data (data not presented to the network during training).
he procedure was repeated for different sets of training-test
ata also and the software for ANN method was developed in
isual Basic.

. Results and discussion

.1. Charge–discharge characteristics of CoO anodes in
ithium-ion cells (experimental results)

The lithium storage capacity and the cycling efficiency of

obalt oxide electrode was examined through charge–discharge
easurements carried out between 0.0 and 3.5 V at a constant

urrent rate of C/10 (Fig. 1). The compound CoO exhibits a
apacity of ∼300 mAh/g upon first discharge, and a subsequent

Fig. 1. Charge–discharge behavior of CoO.

o
a
l

3
o

c
m
t
(
c
q
t
c
p
v
f

Fig. 2. Cycleability behavior of CoO compound.

apacity fade of <10% up to 50 cycles. The discharge plateau
bserved around 0.8 V may be attributed to the decomposition
f CoO to form metallic Co particles of nano-size, which are
ispersed in lithia (Li2O) matrix. The nano-sized Co and the
seudo-amorphous nature imparted to the CoO matrix during
he process of first discharge are believed to be maintained in
he following cycling steps also, based on the cycling behavior of
oO anode up to 50 cycles. Thus the compound CoO undergoes a

eversible decomposition process and substantiates the observed
airly high capacity values upon extended cycling.

It is already reported [36] that the insertion of lithium causes
he local structure around cobalt atoms to become asymmetric,
nd the small sized Co particles are believed to evolve gradually
ith a well-separated distribution in the lithia matrix. As a result,
uring the successive extractions of lithium, the reduced cobalt
articles are reported to return reversibly to the high-temperature
ubic phase of CoO, thus substantiating the minimum capacity
ade of <10% up to 50 cycles. From this, it may be concluded
hat CoO seems to be a good candidate as far as the magni-
ude and the retention of specific capacity are concerned. The
oulombic efficiency of the synthesized CoO anode is found to
e satisfactorily good, as evidenced from Fig. 2 an indication that
he oxide material chosen for the present study qualify itself as
ne of the possible candidates of existing category metal oxide
nodes, by way of possessing an appreciable storage capacity for
ithium.

.2. Deployment of ANN technique for cycle life prediction
f CoO anode (theoretical values)

Generally, ANNs have the capability to transform and reduce
omplicated, coupled systems into an inductive framework for
athematical analysis and data-based modeling [37]. To verify

he estimation/prediction ability of the ANN models developed
trained), different sets of test data (specific capacity values of
harge–discharge cycles) were presented to the network. Subse-
uently, the estimated and predicted values were compared with
he measured specific capacity values, up to 50 charge–discharge

ycles. It is quite interesting to note that the estimated and
redicted values are in good agreement with the experimental
alues. Graphs plotted for training and estimated/predicted data
or different training data approach are shown in Figs. 3–6.
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Fig. 3. Estimation (interpolation) of odd cycle charge–discharge behavior—
even cycle data training approach.

Fig. 4. Estimation (interpolation) of intermediate cycles charge–discharge
behavior—random data (up to 50 cycles) training approach.

Fig. 5. Prediction (extrapolation) of extended cycle charge–discharge
behavior—random data (up to 25 cycles) training approach.

Fig. 6. Prediction (extrapolation) of extended cycle charge–discharge
behavior—all 25 data (up to 25 cycles) training approach.
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Methods adopted:

ethod (estimation
(E)/prediction (P))

Training set Test set

stimation Even cycle data selected
from 1 to 50 cycles

Odd cycle data from 1 to
50 cycles

stimation Random cycle data
selected from 1 to 50
cycles

Remaining cycle data
from 1 to 50 cycles

stimation and
prediction

Random cycle data
selected from 1 to 25
cycles only

Remaining cycle data up
to 50 cycles

rediction All 25 cycles data (up to
25 cycles)

Remaining cycle data
(26–50 cycles)

In other words, Fig. 3 shows the estimation (interpolation) of
dd cycle charge–discharge behavior for even cycle training data
pproach, which is a commonly reported methodology in the
iterature [7,38]. On the other hand, estimation (interpolation)
f in-between cycles for charge–discharge behavior for random
ata training approach (up to 50 cycles) is a newer approach
nd the results pertaining to the same are furnished in Fig. 4.
imilarly, prediction (extrapolation) of data for a total of 50
ycles for charge–discharge behavior for random data training
pproach (up to 25 cycles) and the prediction (extrapolation) of
ata for a total of 50 cycles for charge–discharge behavior for
ll the consecutive 25 cycles training data approach are depicted
n Figs. 5 and 6, respectively. Herein, it is worth mentioning that
iterature has no reports on the training of random cycle data so
lso the extrapolation of data, based on chosen category training
mparted to the system. To be more precise in authenticating the
NN approach to estimate/predict the charge–discharge values
f lithium-ion cells containing CoO anodes, the selection of ran-
om data testing and the extrapolation of the same for random
ata as well as for all the 50 cycles data were made, which is the
ignificance of the present study.

Further, Figs. 7 and 8 show the graphs plotted for experimen-
al versus estimated/predicted data for different training data
pproach with the best fit values (correlation coefficient). It is
bvious from all the figures that an excellent agreement between

he experimental and estimated/predicted capacity values are
bserved, an indication that ANN models can also be used for
xtrapolation of data with some extended range. This is an inter-
sting observation, since literature reports that ANNs are not

Fig. 7. Experimental vs. predicted values (Qdc).
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Table 1
Error values obtained for the different training data approach

Training data approach RMSE Correlation coefficient Hidden layer neurodes

Qdc Qc

Even cycles (E) 0.0081436 0.9837 0.9783 3
Random 50 (E) 0.0080256 0.9841 0.9785 3
Random 25 (E and P) 0.0027328 0.9797
All 25 (P) 0.0099867 0.965
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Fig. 8. Experimental vs. predicted values (Qc).

sually good extrapolators [9]. However, the present study has
aved way for the exploitation of ANNs to extrapolate the data
lso as investigated and verified with the CoO anodes deployed
n lithium-ion cells.

Similarly, the error values obtained for the different methods
f training data approach are displayed in Table 1, which is well
ithin the permissible level (<1%). As it is seen from figures and

able, the estimation/prediction data has a good compatibility
ith the corresponding experimental data, thus leads to the best
t correlation coefficient (r >0.90). In particular, the random data

raining (up to 50 cycles) approach has encountered the highest
alue [r = 0.9841 (Qdc); r = 0.9785 (Qc)], compared to the rest of
he training data approaches. Thus, it is explicit that the proposed
NN model has demonstrated high degree of accuracy and the
ossibility of estimation of the charge–discharge behavior of
ithium-ion cells containing CoO anode.

. Conclusion

The compound CoO has been synthesized in its pure form,
ithout the possible co-existence of Co3O4 impurities by adopt-

ng a carefully monitored solid-state synthesis methodology. The
ompound, due to its phase purity and better crystallinity exhib-
ted a capacity of ∼300 mAh/g, without much capacity fade up to
0 charge–discharge cycles. Further, estimation/prediction and
erification of specific capacity values as a function of cycle life
as been made using ANN with a selection of even data and
andom data (up to 50 cycles) for interpolation of results and
ll data pertaining to 25 cycles (all 25 cycles) and random data

mong 25 cycles for extrapolation (up to 50 cycles) of results.
nterestingly, an excellent agreement between the experimental
nd estimated/predicted capacity values were observed for all
inds of chosen category ANN training data approach, with a

[
[

0.9731 3
0.8747 3

pecial relevance to the random 50 cycles training data approach
ith a correlation coefficient of ∼0.98. Thus, it is demonstrated

hat ANN could be deployed as an effective theoretical tool to
stimate/predict the cycle life characteristics of Li-ion cell with
oO anodes. As an extension of this work, studies on the pre-
iction of extended cycle life performance behavior of variety
f alternate anodes deployed in lithium-ion cells using ANN
echnique are underway.
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