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Abstract

A method of analytic continuation is advanced for computing ac responses of electrochemical systems with arbitrary electrode geom-
etries and proposed as an exact alternative to the approximate and intuitive transmission line models (TLMs). Using a complex extension
of the boundary element method, the small signal ac responses were computed for several Hull cell geometries, the rectangular pore, the
saw-tooth and a fractal geometry. A comparison with the results of the TLMs for the rectangular pore and the saw-tooth reveal quan-
titative as well as qualitative differences. Besides providing a bench-mark for such approximate theories, the present method may well be
the only option for system geometries not amenable to a TLM. An alternative approach to the study of the constant phase element based
on analytic continuation is also sketched.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Current–potential distribution and the ac response of
electrochemical systems are two important areas of Elec-
trochemistry and Electrochemical Engineering. The geom-
etry of the electrochemical system influences both the
current–potential distribution and the ac impedance
response. When we solve the distribution problem, say by
using the Laplace equation, the geometry of the system
enters explicitly along with the boundary conditions to be
satisfied on the boundaries. In contrast, when we solve
the impedance problem on non-trivial geometries, such as
the cylindrical pore and the saw-tooth geometry, one usu-
ally invokes the transmission line model [1] with some
physical/geometric approximation for the model parame-
ters. The transmission line model (TLM) is an interesting
0022-0728/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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model pioneered by de Levie. It has an intuitive appeal
and been subjected to good and extensive use by electro-
chemists. Even fractal electrode surfaces have been mod-
eled using the TLM, besides a host of simpler geometries
[2–6]. However, as pointed out by de Levie himself and
re-emphasized recently in [5], ‘‘the most important weak-
ness in the TLM is the assumption that the current distri-
bution is normal to the macroscopic surface that is a
neglect of the true current distribution. For a rough sur-
face, the lines of electric force do not converge evenly on
the surface. The double layer will therefore be changed
unevenly . . .’’ The tangential components of the interface
charging were recognized by Scheider [3] and included in
a branched TLM; however, the model is still qualitative.
Another limitation of TLM must also be mentioned,
namely the physical and geometrical approximation which
enters the estimation of the TLM model parameters.

The primary question which we address in this paper is
whether we can compute the exact ac impedance of electro-
chemical systems having arbitrary geometry, without
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recourse to the transmission line model. We show that this
is possible using ‘‘analytic continuation’’. More specifically,
given a system and its current distribution, say as a solu-
tion of the Laplace equation with appropriate boundary
conditions, we can deduce the ac response of the same sys-
tem solely from the solution to the current distribution
problem by applying analytic continuation either to the
exact or approximate solution or to the numerical solution
method.

In Section 2, this method of analytic continuation is
briefly sketched and illustrated, for its pedagogical value,
with the help of two otherwise most trivial problems: that
of 1-D and the concentric cylinder electrodes. In Section
3 we describe the boundary element method (BEM) and
it is applied to Hull cell geometries in Section 4 and to frac-
tal geometry (a triadic Cantor bar electrode) in Section 5.
For Hull cells, fractals and a host of other geometries, no
analytic solution is of course available even for the second-
ary current distribution from which to obtain the ac imped-
ance by analytic continuation. Hence, it was found
necessary to incorporate the ‘‘analytic continuation’’ in
the numerical solution method itself. This was done within
the frame work of the boundary element method. Essen-
tially, we used a complex extension of the BEM. In Section
6 we compare the predictions of the present method with
those of the TLM for the rectangular pore and the saw-
tooth geometry and Section 7 outlines an alternative
approach to the constant phase element using analytic
continuation. Section 8 has summary and concluding
remarks.
2. The method of analytic continuation

To be specific, consider the secondary current distribu-
tion problem (sketched in Fig. 1) involving a medium of
conductivity j enclosed between two electrode boundaries
B1 and B2. The differential equation to be solved for vari-
able conductivity is

r � ðjr/Þ ¼ 0 ð1Þ

which reduces to the standard Laplace equation

r2/ ¼ 0 ð2Þ

when j is uniform in space.
0φφ =

      Medium 

B1 B2

1Bφφ =

2Bφφ =

0=φ
(reference potential) 

Fig. 1. A 2-electrode system, defining the different potentials. B1 is the
working electrode and B2 the counter-electrode.
As we are interested in relating the current distribution
to the small signal ac response, we consider the linear
polarization at the boundaries. For example, the boundary
condition at the boundary B1 is

jr/ at B1 ¼ /B1 � /0

Rct;1

ð3Þ

where /0 and /B1 are respectively the potentials at the elec-
trode side and electrolyte side of the electrode boundary B1
which may be taken as the working electrode. Rct,1 is the
charge-transfer resistance at B1. In general a similar condi-
tion may be applied at B2. However, for the purposes of
this present work and without loss of generality, we take
B2 as a counter electrode with zero charge-transfer resis-
tance (i.e., a perfectly leaky capacitor) and consequently
its role is restricted to its geometrical influence on the cur-
rent distribution. By the same token, this leaky capacitor
cannot hold any charge and hence does not affect the ac re-
sponse either. We set /B2 = 0. However, we must keep in
mind that for systems where both the electrodes influence
the response, as for example in an electro-refining cell,
one will have to maintain boundary conditions similar to
Eq. (3) at both the electrodes.

Now we shall suppose that we have solved the Laplace
equation (2) with the above boundary conditions at B1
and B2 and insulating boundary conditions at the remain-
ing boundaries. If /(x,y,z; jRct,1, etc.) is the exact (or
approximate) analytical solution to this problem, the ana-
lytic continuation consists in replacing the simple charge-
transfer resistance Rct,1 at the boundary B1 by the complex
interfacial impedance Z1 at the same boundary. In conven-
tional electrochemical systems, the medium conductivity j
is usually taken as real (i.e., purely resistive). However, j is
known to be complex for some media (the reader may con-
sult the recent book by Barsoukov et al. [5] for several
examples); solid media, with grains and grain–boundaries,
are an important class where j is complex. In such cases,
we must of course do the analytic continuation in j also,
besides Rct,1. Essentially, one takes a real current–potential
distribution, analytically continue it to obtain the complex
current–potential distribution having the phase informa-
tion at each point of the 3-D space. In the simplest case
the complexity enters through the boundary conditions
and in the general case it may enter through the complex
response of the medium also.

The above prescription for analytically continuing the
dc current–potential distribution is easily established by
discretising the medium and the boundaries into discrete
volume and surface elements and applying Kirchoff’s law
to the resulting network (This network is an exact analogue
of the physical system and is no way connected with the
transmission line model. Nor does it involve the use of
any lumped model parameters which the TLM does). Such
an analysis leads to the following expression for the ac
admittance of the system:

Y ¼
R

B1
jr/dB1

/0

ð4Þ



a

b
0φφ =

Fig. 2. Two concentric cylinder electrodes, of radii a and b and with the
outer electrode kept at potential /0 with respect to the inner electrode.

2 Of course, one can trivially perform an analytic continuation on a
primary current distribution if the electrolyte conductivity is complex for
some reason.
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where / is the analytical continuation of the potential dis-
tribution and hence is now complex. Note further that,
interestingly, /0 in Fig. 1 turns out to be the amplitude
of the applied ac signal.

Two simple illustrations of the method are given
below.

2.1. The case of 1-D

o2/
ox2
¼ 0 ð5Þ

� j
o/
ox
¼ /0 � /

Rct1

at x ¼ 0 ð6Þ

� j
o/
ox
¼ /

Rct2

at x ¼ L ð7Þ

This system is trivially solved to obtain the potential and
current distribution.

/ ¼ /0 þ /0

ðxþ jRct1Þ
ðjRct1 þ jRct2 þ LÞ ð8Þ

� jr/jB1 ¼ i ¼ � /0

Rct1 þ Rct2 þ ðL=jÞ
ð9Þ

where i is the current density.
Replace, in Eqs. (8) and (9), Rct1 and Rct2 by Z1 and Z2,

the corresponding interfacial impedances; we obtain the
complex potential and current. Now, the admittance fol-
lows from Eqs. (4) and (9) as

Y ¼ A
Z1 þ Z2 þ ðL=jÞ

ð10Þ

the expected result. A is the area of the electrode.

2.2. Concentric cylinder electrodes

o2/
or2
þ 1

r
o/
or
¼ 0 ð11Þ

� j
o/
or
jr¼b ¼

/ðbÞ � /0

Rctb
ð12Þ

/ðaÞ ¼ 0 ð13Þ

Solving this system, we obtain the following potential
and current distribution:

/ðrÞ ¼ /0

lnðb=aÞ þ j
b � Rctb

� � � ln r
a

� �
ð14Þ

i ¼ �j
/0

r lnðb=aÞ þ j
b Rctb

� � ð15Þ

The analytic continuation Rctb! Zb gives the complex
potential and current distributions. The system admittance
is:

Y ¼ A
Zb þ b

j lnðb=aÞ
� � ð16Þ

where A is the area and Zb the interfacial impedance of the
outer electrode (Fig. 2).
3. The boundary element method and analytic continuation

For primary current distributions in two dimensions,
some analytic solutions are possible by using conformal
transformation. However, we cannot perform any non-
trivial analytic continuation on a primary current distribu-
tion.2 We need at least the secondary current distribution.
Analytic solutions are hard to obtain for the secondary cur-
rent distribution on non-trivial geometries even in 2-D.
Numerical solutions are not an option, as we cannot ana-
lytically continue a numerical solution. Hence, the only
option is to incorporate the analytic continuation in the
numerical solution method itself.

In this section, we summarize and adopt the boundary
element method for the numerical solution and embed ana-
lytic continuation. Essentially, it is a complex extension of
the BEM. The use of the boundary element method [7], a
cousin of the finite element method, is not new to Electro-
chemistry or Electrochemical Engineering. In particular, it
has been used to compute the current–potential distribu-
tions for several cathodic protection problems [8–11] (in
the area of corrosion), including its application by the pres-
ent author to the cathodic protection of some really com-
plex off-shore structures in the Arabian Sea [10,11]. The
mathematical details of the boundary element method, pio-
neered by Brebbia [7], are well documented in the literature
to which we refer the interested reader [7,12,13]. Omitting
the mathematical details, we describe only the salient fea-
tures of BEM relevant for our present context. BEM essen-
tially involves a transformation (using the Green–Gauss
Theorem) of the given partial differential equation (PDE),
together with the boundary conditions, into an integral
equation defined over the boundary of the system. When
the boundary is discretised into the so-called boundary ele-
ments, this integral equation becomes a matrix–vector
equation to be solved for the unknown variables (potentials
and currents in our case) on the boundary. Though, for
most purposes in Electrochemistry, one needs to know only
the boundary potentials and currents, it is only a small
additional step for BEM to compute the potentials and
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currents at any point in the bulk of the medium. Fig. 3
shows a typical Hull cell geometry with the boundary dis-
cretised into a number of boundary elements (N). The
simultaneous equations to which the boundary element
method eventually reduces is the following:

XN

j¼1

LijP j �
XN

j¼1

H ij/j ¼ 0 ð17Þ

with i running from 1 to N. /j and Pj are respectively the
potential and the normal gradient of the potential (related
to the current Ij = �jPj) at the jth boundary element. Lij’s
and H ij’s are the boundary element integrals which incor-
porate the Green’s function of the PDE (the Laplace equa-
tion in our case) and also the system boundary
information. The boundary conditions are not yet in-
cluded. Typically we encounter, in the present work, any
one of the following three types of boundary conditions
on the jth element:

Dirichlet’s condition : /j ¼ a given value ð18Þ
Neuman’s condition : P j ¼ a given value ð19Þ

¼ 0 for insulating boundary elements

Robin’s condition : P j ¼ �
1

j � Rct

ð/j � /0Þ ð20Þ

for boundary elements subject to linear polarization.
Next we simply substitute these boundary conditions in

the system of equations (17) and re-arrange the terms so
that we end up with the following (N · N, N) matrix–vector
equation:

AX ¼ R ð21Þ

with the vector X containing only the unknowns and the
matrix A and the vector R containing only the knowns.
This re-arrangement is known as the ‘‘assembly process’’
in the BEM literature. The vector X has the unknown po-
tential (/j) or the unknown gradient (Pj), depending on the
type of boundary condition applied to the jth element, for
each of the N boundary elements.

In the conventional current–potential distribution prob-
lem, the elements of the matrix A and the vector R are all
real. However when we perform analytic continuation by
replacing Rct (in the Robin’s boundary condition) by the
interfacial impedance Zint, some of the elements of A and
IW1

IW2

W
EC

E

Fig. 3. A Hull cell showing the boundary elements. WE: working
electrode, CE: counter electrode and IW1, IW2 are insulating walls.
Further notations used in this paper: l1 = length of IW1, l2 = length of
IW2 and l3 = length of CE. Length of WE is fixed by l1, l2 and l3.
R become complex. So we will be essentially solving a com-
plex extension of the matrix vector equation (21), with
complex algebraic operations replacing real algebraic oper-
ations. Consequently, the solution vector X will turn out to
have complex elements representing the complex potentials
and currents on the boundary elements. The admittance of
the system follows easily as

Y ¼
X

j

I j

 !,
/0 ð22Þ

where Ij is the complex current normal to the jth boundary
element and the summation runs over the boundary ele-
ments on the working electrode (or on the counter elec-
trode; the equality of the two,3 in the real and imaginary
parts separately, provides a good check on the whole com-
plex calculation).

4. Application to Hull cells

In this section, we apply the method outlined in the pre-
vious section to several Hull cell geometries and compute
the Nyquist plots for a purely capacitive working electrode
(Fig. 4a–d) and for a working electrode with a charge-
transfer resistance in parallel i.e., a Voigt element
(Fig. 5a–d). The dimensions of the Hull cell geometries,
the double layer, the charge-transfer and the conductivity
parameters are given for each plot. For the purely capaci-
tive working electrode, there is a characteristic frequency
dispersion for inclinations of the working electrode other
than the vertical: there is a well-defined high frequency
intercept on the real axis followed by a nearly linear regime
which asymptotically tends to the classical vertical line. For
the rectangular cell (Fig. 4d), one of course recovers the
vertical line. When the working electrode is represented
by a Voigt element, the classical semi-circle is recovered
for the rectangular cell (Fig. 5d) whereas for the inclined
geometries only distorted semi-circles result and the disper-
sion is such that the length of intersection on the real axis is
much smaller than the charge-transfer resistance. For
example, in Fig. 5c, the ‘diameter’ of the distorted semi-cir-
cle is 120 X instead 250 X for the rectangular cell.

Note further that the high frequency intercept on the
real axis for any Nyquist plot in Fig. 4a–d is the same as
the high frequency intercept in the corresponding Nyquist
plot in Fig. 5a–d. Though this effective electrolyte resis-
tance is a function of both the geometry and the frequency,
the Nyquist plots in Fig. 4 show that there are clearly
defined effective electrolyte resistances for the high and
low frequency limits: the intercept on the real axis and
the position of the vertical asymptote, respectively. How-
ever, for the conventional rectangular cell (see Fig. 4d),
there is virtually no frequency dependence of the real part
of the impedance with the high and low frequency limits of
the effective electrolyte resistance coinciding. Hence, for the
3 Except for the sign, which should be different.



Fig. 4. Nyquist plots for several Hull cell geometries. WE exhibits pure
capacitive behavior. Electrolyte conductivity = 0.1 S/cm and double-layer
capacity = 20 lF/cm2. l2 = 5 cm and l3 = 1 cm for all the four geometrics.
l1 = 1 cm (a), 2 cm (b), 3 cm (c) and 5 cm (d). See caption to Fig. 3 for the
meaning of l1, l2 and l3.

Fig. 5. Same as Fig. 4, except that the working electrode now exhibits
linear charge-transfer polarization in parallel with capacitive charging.
Charge-transfer resistance = 250 X cm2.
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rectangular geometry alone, this electrolyte resistance is
given by the simple formula:

R ¼ l=j � a

where l is the length and a the area of cross-section of the
rectangular cell. For any other Hull Cell geometry, we need
to compute the high and low frequency limits of this resis-
tance by solving the Laplace equation in the complex do-
main as it is done in this paper.

Needless to say, a great practical advantage of our pres-
ent method is that it computes, at one strike, the current
distribution, effective solution resistances and the ac imped-
ance of electrochemical systems of arbitrary geometry.
Fig. 6. The fractal electrode. The top side is the counter electrode and the
bottom is a 3-stage Cantor bar working electrode. The two sides are
insulating.
5. Application to a fractal electrode

As a further example of the method proposed here for
computing the ac responses of arbitrary geometries, we
study a triadic Cantor bar earlier investigated by Liu [2]
in the context of the constant phase element (CPE). Liu
[2] and Scheider [3] used transmission line models to probe
the CPE behavior. While Liu approximated the Cantor bar
using a TLM, Scheider never identified the electrode geom-
etry which corresponds to his TLM.

Fig. 6 shows an electrochemical system where the work-
ing electrode is a Cantor bar with the largest and smallest



Fig. 9. Nyquist plot for the 3-stage fractal electrode with pure capacitive
behavior. Electrolyte conductivity and double-layer capacity are the same
as in Fig. 4 (frequency range: 1–100 kHz).
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length scales l and (l/27) respectively. For this system, we
have computed both the conventional secondary current
distribution (with linear polarization) and the ac response
of the fractal with a purely capacitive surface. Fig. 7 plots
the current along the fractal boundary and it is interesting
to note, though not unexpected, that the self-similarity of
the fractal mirrors in the current distribution. When the
smallest length in the fractal is (l/3) instead of (l/27), the
corresponding current distribution is coarsened as in
Fig. 8. l was taken as 5 cm.

The Nyquist ac response of the fractal was also com-
puted and is presented in Fig. 9. This corresponds to the
fractal with the smallest length (l/27) and a purely capaci-
tive surface (the case relevant for CPE behavior). In the
Nyquist plot, CPE manifests itself as a straight segment
which makes an angle with the vertical. In Fig. 10, we
observe that there is a linear portion which is restricted
to the frequency range: (x1,x2). The ends of this frequency
range (x1,x2) seem to nearly correspond to the largest and
smallest length scales (l1 and l2) in the fractal through the
following relations:
Fig. 10. Nyquist plot for the single-stage Cantor bar (frequency range:
1500–5000 Hz).

Fig. 7. The dc secondary current distribution on the fractal electrode of
Fig. 6, computed using the boundary element method. Electrolyte
conductivity = 0.1 S/cm and charge-transfer resistance = 250 X cm2. The
current is in mA.

Fig. 8. Same as Fig. 7, except that the working electrode is a single-stage
Cantor bar instead of the 3-stage fractal.
x1 ¼
j

l1Cdl

ð23Þ

and

x2 ¼
j

l2Cdl

ð24Þ

This leads to the interesting conclusion that the size of this
linear Nyquist region depends on the length-scales l1 and l2
present in the electrode as well as on the electrical conduc-
tivity j and the double-layer capacitance Cdl. Though it is
tempting to identify this linear regime with CPE behavior,
we leave this as an open question requiring more experi-
mental and theoretical work than hitherto available.

Qualitatively, Fig. 9 is not different from the corre-
sponding figures for the Hull cells (Fig. 4). Thus, we may
expect that, whenever the working electrode has one or
more parts that are not parallel to the counter electrode,
it may result in a CPE-like behavior in a certain frequency
range determined by the geometrical details. This in a way



Fig. 12. Nyquist plots for a rectangular pore with the parameters:
L = 7 cm, l1 = l2 = 3 cm, Cdl = 20 lF/cm2, j = 0.1 S/cm. (a) TLM with
Rct = 250 X cm2, (b) analytic continuation with Rct same as in (a), (c)
TLM with infinite Rct, (d) analytic continuation with infinite Rct.
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explains the ubiquitous nature of CPE encountered on
solid electrodes with a range of surface features. Further,
Liu’s transmission line model [2] for the fractal electrode
predicts the CPE behavior in the entire frequency range,
whereas the present work clearly shows that CPE is possi-
ble only in a limited frequency range determined by length
scales present in the surface geometry, more in accord with
experimental impedance data (see [5, p. 87] and references
cited therein).

6. Comparison with the predictions of the TLM

In this section, we make a quantitative comparison
between the predictions of the TLM and the present
method based on analytic continuation implemented using
the boundary element method. Fig. 11 shows a pore geom-
etry which can interpolate between the rectangular and the
saw-tooth (V-shaped groove) geometries. The prediction of
the TLM for the rectangular pore is:

ZRP ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � l1 � j � ðjx � Cdl þ 1=RctÞ
p
� 1

tanhð
ffiffiffi
k
p
� LÞ

ð25Þ

where

k ¼ 2 � ðjx � Cdl þ 1=RctÞ
l1 � j

ð26Þ

In Fig. 12a–d, we compare the Nyquist plots computed
using Eqs. (25) and (26) with the corresponding plots com-
puted using the present method, for finite and infinite
charge-transfer resistances. One is struck by the fact that
they differ by one order of magnitude both in the real
and imaginary components of the impedance, with the
TLM underestimating the impedance! [We are even
tempted to look for a geometry-dependent scaling parame-
ter which may connect the two.] Another difference to be
noted from Fig. 12 is that the TLM predicts, at the high
frequency limit, zero effective pore-solution resistance
whereas the present method correctly predicts a finite value
for the same quantity in addition to a different slope. To
show this difference clearly, we have focused the data, in
Fig. 12c and d, to the high frequency region near the origin.

The prediction of the TLM for the saw-tooth geometry
is [5,14]:

ZST ¼
I0ðkÞ

j � k � tan b � I1ðkÞ
ð27Þ
Insulating
Back-end
[width 2l ]

Pore-
Mouth
[width 1l ]

Pore of depth L 

Fig. 11. Geometry of a pore with an insulating back-end. For l1 = l2 it
reduces to a rectangular pore and l2 = 0 results in a saw-tooth geometry.
The thick lines show the working electrode. L is the pore-depth.
where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � L � ðjx � Cdl þ 1=RctÞ=ðj � sin bÞ

p
ð28Þ

and 2b is the angle at the vertex of the V-shaped tooth. I0

and I1 are modified Bessel functions of the first kind. In
Fig. 13a–d, we compare the Nyquist plots computed using
Eqs. (27) and (28) with the corresponding plots computed
using the present method, for finite and infinite charge-
transfer resistances. One is struck by the closeness of the
two predictions! However, in the high frequency limit,
the differences which we noted between the predictions of
the TLM and the present method for the rectangular pore
continues to persist even in the case of the saw-tooth. In
Fig. 13c and d, we have used a wider frequency range in
order to show clearly the low frequency vertical asymptote,
in contrast to Fig. 12c and d where the high frequency re-
gion was focused.



Fig. 13. Nyquist plots for a saw-tooth with the parameters: L = 7 cm,
l1 = 3 cm, l2 = 0, Cdl = 20 lF/cm2, j = 0.1 S/cm. (a) TLM with
Rct = 250 X cm2, (b) analytic continuation with Rct same as in (a),
(c) TLM with infinite Rct, (d) analytic continuation with infinite Rct.
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Hence, we may conclude by saying that, while for cer-
tain geometries and model parameters the TLM may pro-
vide a good approximation, for others it may lead to
significant errors at the quantitative and qualitative levels.
Besides, one may not even be able to formulate a TLM for
arbitrary geometries. The message is that we now have an
exact method of computing the ac impedances of arbitrary
electrode geometries which can provide a bench-mark for
evaluating approximate methods such as TLM.

7. Analytic continuation as an approach to the constant

phase element

The method of analytic continuation described in this
paper provides an interesting approach to the impedance
of the constant phase element:
ZCPE ¼
A
ðjxÞa ð29Þ

where A and a are usually treated as empirical parameters
and obtained by fitting the experimental impedance data to
this power law. There have been several theoretical at-
tempts to understand this power law using pore and fractal
models, distributions of relaxation times and scaling theo-
ries (see [5] and references therein). Despite much efforts by
several groups, a satisfactory theory is yet to emerge to ex-
plain this power law and also to connect the CPE parame-
ters A and a to microscopic physical material properties of
the system.

Below we outline an approach to CPE based on analytic
continuation and establish an experimentally verifiable
connection between the CPE parameters (A and a) and
the system properties such as electrolyte conductivity j
and double-layer capacity Cdl.

Wagner showed that secondary current distributions are
controlled by the dimensionless number (named after him):

Wa ¼ jRct=l ð30Þ

where j is the electrolyte conductivity, Rct the charge-trans-
fer resistance (=RT/(aa + ac)F * i0) and l is a characteristic
length scale on the electrode. i0 is the exchange current den-
sity. West [15] studied secondary currents near the corners
of V-shaped regions and showed that, in these regions, the
current obeys a power law:

i / ðaa þ acÞF � i0

RTj

� �ð1�p=2bÞ

ð31Þ

where b is the vertex angle of the V-shaped groove. It is not
hard to imagine a rough electrode as an assembly of sharp
corners and edges with a distribution of b [This distribution
may even have an underlying fractal dimension!]. Eqs. (31)
and (30) predict that, near a rough electrode, the dominant
contribution to the current is of the form:

i / 1=Waa ð32Þ

/ l
j � Rct

� �a

ð33Þ

We can now obtain the ac response of the corresponding
perfectly polarisable electrode by replacing Rct in Eq. (33)
by 1/jxCdl, resulting in the CPE power law:

ZCPE / ðj=Cdl � lÞa=ðjxÞa ð34Þ

Comparing Eqs. (29) and (34), we see that the CPE param-
eters A and a are connected to system properties by

A / ðj=Cdl � lÞa ð35Þ

and

a ¼ ð1� p=2bÞ ð36Þ

Interestingly, the prediction contained in Eq. (35) is sup-
ported by an experimental result reported by Scheider [3] in
1975. When he plotted, for a fixed frequency, the logarithm
of the so-called ‘‘polarization capacitance’’ against the
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logarithm of the electrolyte conductivity, straight lines were
obtained. Scheider’s polarization capacitance is propor-
tional to our A parameter in Eqs. (29) and (35). Clearly,
his log-log plots offer the necessary experimental support
for our Eq. (35). Including the frequency dependence, the
complete expression which our Eq. (34) predicts for Sche-
ider’s polarization capacitance is:

Polarisation capacitance / ðj=Cdl � lÞax�a ð37Þ
in complete agreement with Scheider’s major experimental
finding. The size-dependent frequency scaling implied by
Eqs. (34) and (37) also provides support for the Halsey–
Leibig theory [16] of the constant phase element.

8. Summary and concluding remarks

An exact alternative method is advanced in this paper,
in the place of the approximate and intuitive transmission
line models, for the computation of ac responses of electro-
chemical systems having any given geometry. This method,
based on a simple and elegant analytic continuation from
the secondary current distribution, was illustrated by
applying it to several Hull cell geometries and a fractal
geometry. A comparison with the transmission line models
for the rectangular pore and the saw-tooth geometry
showed that the TLM prediction for the latter agreed clo-
sely with the results of the present method and the TLM
prediction for the former underestimated the impedance
by one order of magnitude! The high frequency slope and
intercept of the TLM was incorrect in both the cases.
Lastly, an interesting alternative approach to the constant
phase element was outlined using analytic continuation
and its predictions were shown to be supported by experi-
mental data.

The complex extension of the boundary element method
which we have used opens up the possibility of computing
the ac responses for any complicated geometry. It also pro-
vides a good bench-mark for evaluating the predictions of
transmission line models. Though we restricted ourselves,
in the use of BEM, to two dimensions and secondary cur-
rent distributions, the method presented is more general.
Extensions to 3-D and tertiary current distributions will
be taken up in the future.

The complex extension of the BEM used in this paper
should be clearly distinguished from the complex variable
BEM developed by Hromadka et al. [17] wherein the com-
plexity enters through the spatial variables and not through
the parameters as in the present work. For the same reason
our method does not have any dimensional restrictions.
Hence, our method may be appropriately named complex
parameter boundary element method. The two methods
and their goals are essentially different.

A final remark on the existence of solutions under ana-
lytic continuation: Existence and uniqueness of solutions
are important issues addressed by mathematicians. In the-
ory we are pragmatic and go along with our methods
unless there are indications to the contrary. In case of
any doubt or malignancy spotted in the computed results
we should of course investigate further and for such cases
a Kramers–Kronig test on the computed results may be
appropriate as analytic continuation, analytic functions
and Kramers–Kronig relations are neatly tied to one
another.
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