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Adsorption of solvent or organic compounds at a metal/interface is characterized by a

wide spectrum of interactions governing the phenomenon under effective fields of order
≈ 107 V/cm. A generalized spin-1 Ising Hamiltonian was formulated by considering var-
ious interactions under molecular field approximation (MFA) to arrive at a three-state
model of adsorption isotherm (i.e. the joint adsorption of two different organic com-
pounds in the presence of solvent molecules). A general multi-state model was deduced
heuristically and an expression for the charge (σM

max) at which maximum adsorption
(θmax) occurs derived explicitly for a three-state site parity model that incorporates
short-range interaction energies, functional dependence of permanent and induced dipole
moments of the organic adsorbate, and the solvent and substrate interactions.

Keywords: Electrosorption; short-range and couloumbic interaction; dipolar; metal–
electrolyte interface; field effect; surface thermodynamics.

1. Introduction

The phenomenon of adsorption is controlled by the various interactions among
the constituents of the interface and the forms of adsorption isotherms hold the
clue to the nature of interactions. The types of interactions are varied: electronic
(chemisorptions like), long-range coulombic, Van der Waals, etc. An understanding
of this phenomenon may be said to be complete only when parameters occurring
in such expressions for isotherms are interpretable in terms of either molecular
or electronic interactions. The method of expressing the parameters of isotherms
through a microscopic modeling is a simple one. Such a task is particularly made
difficult in case of charged interfaces.

Adsorption of organic compounds or solvent at a metal/electrolyte interface
is characterized by the effective fields of order ≈ 107 V/cm and with a wide spec-
trum of molecular interactions1–9 governing the phenomenon. Adsorption of neutral
organic compounds at the electrochemical interfaces exhibits a maximum surface
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Table 1. Values of σM
max for various adsorbates.

Adsorbate Interface σM
maxµC/cm2

Butane-1,4-diol Hg/NaF −2.5
n-Butanol Hg/NaF −2.0
2-Butyne-1,4-diol Hg/NaF −1.0
Diethyl ether Hg/NaF −4.5

Acetailide Hg/NaF 0
Ethylene glycol Hg/NaF −3.5
Acetonitrilc Hg/NaF −3.5
5-Chloro-1-pentanol Hg/NaF −1.0
Ethyl bromide Hg/KCl −2.0 to 0
n-Propanol Hg/NaF −2.0
Butane-1,4-diol Hg/NaF −2.8 (θ → 0) to

−3.7 (θ → 1)
Urea Hg/KNO3 8
n-Butanol Hg/NaCl −2.8
Butyric acid Hg/NaCl −1.8
Butyramide Hg/NaCl −5.5
Butyl glycol Hg/NaCl −3.5
Succiononitrile Hg/NaF −4.6
Butyronitrile Hg/NaF −4.0
t-Butanlo Hg/NaF −2.8
(2-Methylthio)ethanol Hg/NaF +1.0
n-propanol Cd/KF −3.9
Dimethylformamide Hg/NaF 0
n-Butanol Ag/KCl −1.1
Ethylene glycol Ag/KCl −3.2
Polyvinyl alcohol Ag/KCl −2.1 ± 0.2
Sucrose Hg/NaF 0
Tetra methyl urea Hg/NaF −4.0
Ethylene glycol Hg/KCl −3.7
Ethylene glycol Hg/KBr −4.0
Ethylene glycol Hg/KI −5.0

Source: Ref. 12.

coverage, usually near the potential of zero charge (pzc). There are also instances
when no maximum adsorption (as a function of charge or potential) is found, for
example, thiourea,10 tetra methyl thiourea,11 etc. Table 1 indicates12 a partial list
of organic adsorbate and the corresponding values of the charge (σM

max) at which
maximum adsorption (θmax) occurs.

The simplest description of the adsorption at charged interface is a two-state
(s = 1/2) model wherein the adsorbate and the solvent is assumed to have one
orientation each at the interface. A lattice site is to be occupied either by an organic
molecule or by a solvent dipole. It has been shown13 that the analysis of such a
simple model itself is nontrivial. There exist several reasons for the need of a higher
state model (s = 1, 3/2, etc.).14 In the discrete lattice versions, the preliminary
step is to label each site with the help of a spin variable viz. si. For the simple two-
component model (adsorption of two different entities), si can assume −1 or +1
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(spin-1/2 model). In the next higher version viz. a three-state (spin-1 model), the
allowed values of si are +1, −1, and 0. Once occupancy of the lattice site is described
using si, the next step is to express the various energetic contributions individually
and formulate the total Hamiltonian characterizing the system. Solution of the
Hamiltonian leads to the various equilibrium coverage, the relevant order parameter,
the potential difference across the inner layer, etc.

A hierarchy of multistate models15–17 has been developed for describing the
electrosorption of neutral organic compounds, and the functional dependence of
the charge and potential of maximum adsorption on permanent and induced dipole
moments of the organic adsorbate and the solvent, substrate interactions etc. has
been derived. An issue hitherto not extensively analyzed, in this context, is the
dependence of maximum adsorption parameters on the surface coverage.

The purpose of the present analysis is to derive a spin-1 isotherm and deduce
heuristically a general (Ns + 1) state model (where Ns denotes the number of ori-
entational state of the solvent dipoles) and to derive an expression for the charge
(σM

max) at which maximum adsorption (θmax) occurs explicitly for a three-state site
parity model that incorporates short-range interaction energies, functional depen-
dence of permanent and induced dipole moments (of the organic adsorbate and the
solvent), and substrate interactions. The essential ingredients of the model and the
methodology of deriving the equilibrium relations have been discussed in the next
section.

2. Generalized Spin-1 Ising Model

A generalized spin-1 Ising Hamiltonian16 is formulated taking into account various
interactions, and is resolved under molecular field approximation (MFA). The first
step in the analysis of spin-1 model is to associate with each lattice site a spin
variable si, which can take the values +1, −1, or 0 and then an auxiliary variable
s2

i , which has the value 1 or 0. For this model, si = +1 indicates the presence
of the neutral adsorbate (I) at the lattice site i and si = −1 is a sign for the
occupancy of neutral adsorbate (II) at site i. When the lattice site i is occupied by
the solvent species, si = 0. Using the spin variables, various interactions are then
added appropriately in formalism.

Once such a physical picture for describing adsorbate(s) in terms of their site
occupancy is presumed, the rest of the analysis concerns the formulation of the
Hamiltonian. In the case of adsorption of neutral dipoles at the electrochemical
interface, the multi-components, multi-site, and multi-configurational characteris-
tics of the species are dealt. The organic adsorbate and solvent molecules can have
different dipolar orientational states (i.e. configurations) at the interface.

2.1. Substrate interaction energies

The effective binding energies (specific interaction with substrate) of the two adsor-
bates and of the solvent with electrode surface are ∆UA1, ∆UA2 and ∆Uw. Then,
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the contribution to the total Hamiltonian (Hne) is

Hne =
∑ si(si + 1)

2
∆UA1 +

∑ si(si − 1)
2

∆UA2 +
∑

(1 − s2
i )∆Uw, (1)

Hne = −H1

∑
si − D1

∑
s2

i + constants, (2)

where H1 = −(∆UA1 − ∆UA2)/2, (3a)

D1 = −(∆UA1 + ∆UA2 − 2∆UW)/2. (3b)

Further, D1 + H1 = −(∆UA1 − ∆UW)/2 = −∆U1, (4)

D1 − H1 = −(∆UA2 − ∆UW)/2 = −∆U2. (5)

The purpose of writing Eqs. (4) and (5) is to identify the energetic contributions of
each adsorbate with respect to the solvent, the reference frame. From the literature
it was noted that this modus operandi was hitherto not adopted. However, this
was implemented in the entire paper to indicate the energetic contribution of each
species.

2.2. Coulombic interactions

The field at a given site is composed of the external field 4πσM due to electrode
charge density σM and the reaction field arising from the dipole–dipole interaction.
The coulombic interaction energy between a pair of dipoles depends on their mutual
orientations, and the state of a dipole at a given lattice site will be influenced due to
the occupancy of the neighboring site by other dipoles. The local field ξi at lattice
site i can be written as

ξi = 4πσM +
∑ fijsj(sj + 1)

2
(pA1 − αA1ξj) +

∑ fijsj(sj − 1)
2

(pA2 − αA2ξj)

+
∑

fij(1 − s2
j)(pW − αWξj), (6)

where ξj is the field at the dipole site j, fij is the potential due to a pair of (unit)
dipoles at sites i and j, σM is the charge density on the electrode surface, pA1,
pA2, pW are (the normal components of) permanent dipole moments pertaining
to the two adsorbates and the solvent, respectively, and αA1, αA2, αw are the
polarizabilities of the adsorbate and the solvent, respectively.

The above equation represents many center effects contained in the ξi term.
Under MFA, Eq. (6) can be rewritten as

〈ξ〉 =
4πσM + pA1

∑fijsj(sj+1)
2 + pA2

∑ fijsj(sj−1)
2 + pW

∑
fijsj(1 − s2

j)

1 + αA1

∑ fijsj(sj+1)
2 + αA2

∑ fijsj(sj−1)
2 + αW

∑
fijsj(1 − s2

j)
. (7)
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Consequently, the coulombic contribution to the total Hamiltonian becomes

HC =
∑ sj(sj + 1)

2

(
pA1〈ξ〉 − αA1〈ξ〉2

2

)
+
∑ sj(sj − 1)

2

(
pA2〈ξ〉 − αA2〈ξ〉2

2

)

+
∑

(1 − s2
j)
(

pW〈ξ〉 − αW〈ξ〉2
2

)
(8)

HC = −H2Σsj − D2Σs2
j , (9)

where H2 = −1
2

[
(pA1 − pA2)〈ξ〉 − (αA1 − αA2)

〈ξ〉2
2

]
(10a)

D2 = −1
2

[
(pA1 + pA2 − 2pW)〈ξ〉 − (αA1 + αA2 − 2αW)

〈ξ〉2
2

]
. (10b)

Then D2 + H2 = −
(

∆p1〈ξ〉 − ∆α1
〈ξ〉2
2

)
, (11)

D2 − H2 = −
(

∆p2〈ξ〉 − ∆α2
〈ξ〉2
2

)
, (12)

where

∆p1 = pA1 − pW ∆p2 = pA2 − pW, (13a)

∆α1 = αA1 − αW ∆α2 = αA2 − αW. (13b)

2.3. Short-range interactions

The total short-range or nearest neighbor interaction between two particles at the
location sites i and j is Jij . Defining P 1

i , P 2
i , and P 3

i as

P 1
i =

si(si + 1)
2

, (14a)

P 2
i =

si(si − 1)
2

, (14b)

P 3
i = (1 − s2

i ). (14c)

The short-range interaction between similar species is J11 or J22, or J33, and dis-
similar species is J12 or J23 or J31. Hence, particle–particle interaction18–22 can be
written as

HS =
∑
〈ij〉

[(J11P
1
i P 1

j + J22P
2
i P 2

j + J33P
3
i P 3

j ) + J12(P 1
i P 2

j + P 2
i P 1

j )

+ J23(P
2
i P

3
j + P 3

i P 2
j ) + J31(P

1
i P

3
j + P 3

i P 1
j )]. (15)

The above Hamiltonian can be rewritten as shown below to point out how they can
be characterized by three interaction energies: K, L, J , and the two other fields D′

3
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and H ′
3. Equation (15) becomes

HS = −K
∑
〈ij〉

s2
i s

2
j −L

∑
〈ij〉

(sis
2
j + sis

2
j)− J

∑
〈ij〉

sisj −D′
3

∑
i

s2
i −H ′

3

∑
i

si, (16)

where K =
(J11 + J22 + J33)

4
+ (J33 − J31 − J32), (17a)

L =
(J11 − J22)

4
+

(J32 − J31)
2

, (17b)

J =
J11 + J22 − 2J12

4
, (17c)

D′
3 = (J31 + J32 − 2J33), (17d)

H ′
3 = (J31 − J32). (17e)

Then, D′
3 + H ′

3 = 2(J31 − J33), (18)

D′
3 − H ′

3 = 2(J32 − J33). (19)

2.4. Spin-1 Ising Hamiltonian

If the energetic involvement due to the chemical potential included in the short-
range interaction of the two fields D′

3 and H ′
3 then turn out to be D3 and H3.

Hence,

D3 = (J31 + J32 − 2J33) +
(µ31 + µ32 − 2µ33)

2
, (20a)

H3 = (J31 − J32) +
(µ31 − µ32)

2
. (20b)

Then, D3 + H3 = 2(J31 − J33) + ∆µo
1 + kT ln

(
cA1

cW

)
, (21)

D3 − H3 = 2(J32 − J33) + ∆µo
2 + kT ln

(
cA2

cW

)
, (22)

where µA1 = µo
A1 + kT ln cA1, (23a)

µA2 = µo
A2 + kT ln cA2, (23b)

µW = µo
W + kT ln cW, (23c)

∆µo
1 = µo

A1 − µo
W, (23d)

∆µo
2 = µo

A2 − µo
W. (23e)

cA1 and cA2 are the concentrations of the adsorbate. Consequently,

D = D1 + D2 + D3, (24a)

H = H1 + H2 + H3. (24b)
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The total Hamiltonian16,18–20 with all terms including the energetic contribution
due to chemical potential can be written as

HT = −K
∑
〈ij〉

s2
i s

2
j − L

∑
〈ij〉

(sis
2
j + s2

i sj) − J
∑
〈ij〉

sisj − D
∑

i

s2
i − H

∑
i

si, (25)

where J, K, L, D, and H are the composite parameters composed of the molecular
constants, like permanent dipole moments, lattice spacing, etc. and those charac-
terizing the various interactions among the configurations in the electrostatic field.
They will assume different forms depending upon the model chosen. The (i, j) refers
to the sites spanning the basic lattice picture. The parameters D and H are aver-
aged field-dependent terms containing certain chemical potential. Then,

D + H = (D1 + H1) + (D2 + H2) + (D3 + H3)

= −∆U1 −
(

∆p1〈ξ〉 − ∆α1
〈ξ〉2
2

)
+ 2(J31 − J33) + ∆µo

1 + kT ln
(

cA1

cW

)
,

(26)

D − H = (D1 − H1) + (D2 − H2) + (D3 − H3)

= −∆U2 −
(

∆p2〈ξ〉 − ∆α2
〈ξ〉2
2

)
+ 2(J32 − J33) + ∆µo

2 + kT ln
(

cA2

cW

)
.

(27)

For brevity, the terms correspond to the medium effects not included in the
Hamiltonian. Equation (25) represents a general Hamiltonian for a three-state
description. The fields D and H contain 〈ξ〉, which is a function of spin variables,
〈si〉 and 〈s2

i 〉. However, the spin variable itself is simply related to equilibrium
coverage θ1 and θ2 through

〈si〉(〈si〉 + 1)
2

= θ1, (28a)

〈si〉(〈si〉 − 1)
2

= θ2, (28b)

1 − 〈s2
i 〉 = 1 − θ1 − θ2. (28c)

Hence, the isotherm can be obtained.

2.5. Derivation of isotherm

The MFA solution of the Hamiltonian16,18–20 represented by the equation leads to
two implicit equations (29) and (30) containing 〈si〉 and 〈s2

i 〉:
〈si〉
〈s2

i 〉
= tanh{β(H + 2J〈si〉 + 2L〈s2

i 〉)}, (29)

1 − 〈s2
i 〉

〈si〉 =
exp{β(D + H + 2[J + L]〈si〉 + 2[K + L]〈s2

i 〉)}
1 + exp{−2β(H + 2L〈s2

i 〉 + 2J〈si〉)} , (30)

where β = 1/kT .
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Then, after manipulation, to be familiar with the energetic contributions of
various interactions, the following equation can be written in terms of spin variables
to each of the adsorbates appropriately, as shown below:

〈si〉(〈si〉 + 1)/2
1 − 〈s2

i 〉
= exp{β(D̃ + H̃)} (31)

〈si〉(〈si〉 − 1)/2
1 − 〈s2

i 〉
= exp{β(D̃ − H̃)} (32)

H̃ = H + 2J〈si〉 + 2L〈s2
i 〉 (33a)

D̃ = D + 2L〈si〉 + 2K〈s2
i 〉. (33b)

In addition, as stated above, spin variables can be identified in terms of surface
coverage as given below:

θ1

1 − θ1 − θ2
= exp{β(D̃ + H̃)} (34)

θ2

1 − θ1 − θ2
= exp{β(D̃ − H̃)} (35)

D̃ + H̃ = D + H + (2J + 4L + 2K)θ1 + (2K − 2J)θ2

= D + H + 2a11θ1 + 2a12θ2 (36)

and

D̃ − H̃ = D − H + (2K − 2J)θ1 + (2J + 4L + 2K)θ2

= D − H + 2a21θ1 + 2a22θ2, (37)

where 2a11 = β(2J + 4L + 2K), (38a)

2a22 = β(2J − 4L + 2K), (38b)

2a12 = 2a21 = β(2K − 2J), (38c)

and a11, a22, and a12 or a21 are the short-range interaction constants composed
of JAA, Jss, JAs etc. as defined above in Eqs. (38a)–(38c) all the way through
(17a)–(17c). After substituting for D + H and D −H from Eqs. (26) and (27), the
isotherms are obtained as
θ1 exp{−2a11θ1 − 2a12θ2}

1 − θ1 − θ2
= exp[β(D1 + H1)] exp[β(D2 + H2)] exp[β(D3 + H3)]

(39)

θ2 exp{−2a21θ1 − 2a22θ2}
1 − θ1 − θ2

= exp[β(D1 − H1)] exp[β(D2 − H2)] exp[β(D3 − H3)].

(40)

So far isotherms are expressed in terms of fields D and H . Hereafter, they will be
expressed in terms of molecular parameters.



November 16, 2007 16:34 WSPC/178-JTCC 00345

Role of Short Range Interactions in the Charge of Maximum Adsorption 723

2.6. Isotherms with short-range effects

Substituting for appropriate fields

θ1 exp{−2a11θ1 − 2a12θ2}
1 − θ1 − θ2

= β1

(
cA1

cW

)
exp

[
−β

(
∆p1〈ξ〉 − ∆α1

〈ξ〉2
2

)]
(41)

θ2 exp{−2a21θ1 − 2a22θ2}
1 − θ1 − θ2

= β2

(
cA2

cW

)
exp

[
−β

(
∆p2〈ξ〉 − ∆α2

〈ξ〉2
2

)]
, (42)

where

β1 = exp β[2(J31 − J33) + ∆µo
1] exp(−β∆U 1) (43a)

β2 = exp β[2(J32 − J33) + ∆µo
2] exp(−β∆U 2). (43b)

Then,

〈ξ〉 =
4πσM + ce

d3 [pA1θ1 + pA2θ2 + pW(1 − θ1 − θ2)]
1 + ce

d3 [αA1θ1 + αA2θ2 + αW(1 − θ1 − θ2)]
(44a)

or

〈ξ〉 =
4πσM + ce

d3 pW + ce

d3 [∆pA1θ1 + ∆pA2θ2]
1 + ce

d3 αW + ce

d3 [∆αA1θ1 + ∆αA2θ2]
. (44b)

After substituting for fij , the dipole–dipole interaction term, ce/d3, where ce is
the effective coordination number, the two equations (41) and (42) have to be
solved for θ1 and θ2 to know the joint adsorption as θ = θ1 + θ2. This is the two-
component version of the Frumkin isotherm. However, this derivation has not yet
been demonstrated.

2.7. Absence of short-range interactions

In this analysis when short-range interactions are neglected, there is much simpli-
fication in the algebraic analysis. The isotherm can be represented as

Σθi

(1 − Σθi)
=
∑

BicAi exp
[
−β

(
∆pi〈ξ〉 − ∆αi

〈ξ〉2
2

)]
(45)

or

θ

(1 − θ)
=
∑

BicAi exp
[
−β

(
∆pi〈ξ〉 − ∆αi

〈ξ〉2
2

)]
, (46)

where

θ = Σθi (47a)

Bi = β
′
i exp(−β∆Ui)/cw (47b)

β′
i = expβ[2(J3i − J33) + ∆µo

i ] (47c)
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〈ξ〉 =
Σ[4πσM + (ce/d3)pk]fk

Σ[1 + (ce/d3)αk]fk
, kw = 1, 2, and fw = 1 (47d)

fi =
θi

(1 − Σθi)
= BicAi exp

[
−β

(
∆pi〈ξ〉 − ∆αi

〈ξ〉2
2

)]
, i = 1, 2. (47e)

It should be noted that ∆pi and ∆αi are defined with the solvent as the “reference
frame” and therefore ∆pw = 0 and ∆αw = 0, and consequently kw is zero.

3. Generalized N-State Model

Generalizing the procedure for an N -state model, heuristically the isotherm for
multi-component adsorption can be rewritten as

θ

1 − θ
=
∑

i

BicAi exp
[
−β

(
∆pi〈ξ〉 − ∆αi

〈ξ〉2
2

)]
exp


2
∑

j

aijθj


, (48a)

where i = 1, 2, . . . , N and j = 1, 2, . . . , N for N different adsorbates and one solvent.
The parameters, θ = Σθi is the total surface coverage of all the organic adsorbates,
cAi is the concentration of ith species, ∆pi = pAi − pw, ∆αi = αAi − αw, ∆Ui =
UAi−Uw, ∆µo

i = µo
Ai−µo

w, and Bi = exp{−β[∆µi +2(Jiw−Jww)] exp(−β∆Ui)/cw

and

〈ξ〉 =
[4πσM + (ce/d3)pw] + (ce/d3)Σ∆piθi

[1 + (ce/d3)αw] + (ce/d3)∆αiθi
, (48b)

where

θi

1 − θi
= BicAi exp

[
−β

(
∆pi〈ξ〉 − ∆αi

〈ξ〉2
2

)]
exp


2
∑

j

aijθj


 , (48c)

and aij is the short-range interaction constant.
In the case of an organic adsorbate with one orientational state in the presence

of a solvent in N -orientations, Eq. (48a) leads to

(1 − θ)CA

θ
=

NS∑
i

Bi exp
[
−β

(
∆pi〈ξ〉 − ∆α

〈ξ〉2
2

)]
exp


2
∑

j

aijθj




(i = 1, 2, . . . , NS; j = 1, 2, . . . , NS), (49a)

where

∆pi = pwi − pA, ∆α = αw − αA, ∆µo
i = µo

w − µo
A, ∆Ui = Uwi − UA (49b)

Bi = cw exp[β{∆µo
i + 2(JAwi − JAA)}] exp(−β∆Ui)

cA is the concentration of the adsorbate,

〈ξ〉 =
[4πσM + (ce/d3)[pAθ + Σpwiθi

1 + (ce/d3)[αAθ + (ce/d3)αwΣθi
, (49c)
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and

θi

1 − Σθi
= Bi(cw/cA) exp

[
−β

(
∆pi〈ξ〉 − ∆α

〈ξ〉2
2

)]
exp

(
2
∑

i

aijθj

)
, (49d)

θi is the surface coverage of the solvent dipoles in the ith orientation, θ = 1−Σθi is
the surface coverage of the organic adsorbate, and aij is the short-range interaction
constant.

Although one would be tempted to regard the analysis of (Ns+1) state models as
algebraically tedious and non-transparent, it is demonstrated here that the general
equation can be written in a straightforward manner.

4. Analysis of (Ns + 1) State Models with Coulombic Interactions

The essential ingredients of the model and the methodology of deriving the equi-
librium relations have already been discussed. In the general case of (Ns + 1) state
model, where Ns denotes the number of orientational states of the solvent dipoles,
the adsorption isotherm can be written as

Σθi

1 − Σθi
=

1
(cA/cs)

NS∑
1

exp[−β(∆Usi − ∆UA)] exp
[
−β

(
∆pi〈ξ〉 − ∆α

〈ξ〉2
2

)]
,

(50a)

where Σθi = 1 − θ, ∆pi = psi − pA, ∆α = αs − αA, and (50b)

θi is the surface coverage of the solvent dipoles in the ith orientational state.
Equation (50a) can also be written in a more familiar form as

θ

1 − θ
=

βocA exp
{
−β
[
(pA − ps1)〈ξ〉 + (αA − αs)

〈ξ〉2
2

]}
1 +

∑NS

2 exp{−β[(∆Usi − ∆Us1) + (psi − ps1)〈ξ〉]}
, (51)

where βo = exp{β(∆Us1 − ∆UA)} apart from the standard chemical potentials,
and cA is the bulk concentration of the organic adsorbate, relative to that of water,
and the other symbols have their usual significance. The polarizability is assumed
to be equal in each orientational state of the solvent and the short-range chem-
ical interactions between the adsorbate(s) have been deliberately ignored; 〈ξ〉 is
given by

〈ξ〉 =
[4πσM + (ce/d3)pA] + (ce/d3)Σpiθi

[1 + (ce/d3)αA] + (ce/d3)αsΣθi
. (52a)

From the adsorption isotherm equation (50a), the following equation can be
obtained:

4πσM
max =

(
1 +

ce

d3
αA

)
〈ξmax〉 − ce

d3
pA, (52b)
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where 〈ξmax〉 is the solution of the implicit equation given by

〈ξmax〉 =
Σ∆psiθi

∆αΣθi
=
∑Ns

i ∆psi exp[−β{(∆Usi − ∆UA) + ∆psi〈ξmax〉
∆α

∑Ns
i exp[−β{(∆Usi − ∆UA) + ∆psi〈ξmax〉

=
∑Ns

i=1(psi − pA) exp[−β{∆Usi] exp[−βpsi〈ξmax〉]
α
∑Ns

i=1 exp[−β∆Usi] exp[−βpsi〈ξmax〉]
, (53)

and psi denotes the normal component of the permanent dipole moment of the
solvent in the ith orientational state. Equation (53) can be further simplified and
written elegantly as

〈ξmax〉 =
1

∆α

[∑Ns
i psi exp[−β∆Usi] exp[−βpsi〈ξmax〉]∑Ns

i exp[−β∆Usi] exp[−βpsi〈ξmax〉]
− pA

]

=
p̄s − pA

∆α
, (54a)

where

p̄s =
Σpsi exp[−β(∆Usi)] exp[−βpsi〈ξmax〉]

Σ exp[−β(∆Usi) exp[−βpsi〈ξmax〉] . (54b)

It is of interest to note that Eqs. (52a) and (52b) are of general validity, and
particular cases for several site parity models can be recovered by assigning appro-
priate values for Ns. In the two-state site parity model, discussed in Ref. 12, Ns = 1,
〈ξmax〉 → ∆p/∆α, and we recover Eq. (1) of Ref. 12. For the three-state site parity
model, 〈ξmax〉 is to be obtained from the solution of the transcendental equation
(53) or Eq. (54a) with Ns = 2 and this is to be used in Eq. (52b) to obtain σM

max.
These results are in accordance with Eqs. (40) and (47) of Ref. 12.

5. Models with Short-Range (Chemical) Interactions Between the
Adsorbates

In the models discussed in Ref. 12 and now in Sec. 4, the short-range interaction
energies were not taken into account. Therefore, it is of interest to confirm the effect
of the short-range interactions constant on the θ-dependent charge of maximum
adsorption. For this, the general (Ns + 1)-state model of the adsorption isotherm
with short-range interaction was taken for maximization.

Σθi

1 − Σθi
exp


−2

∑
j

aijθj




=
1

(cA/cs)
Σ exp

{
−β

[
(∆Usi − ∆UA) + ∆pi〈ξ〉 − ∆α

〈ξ〉2
2

]}
, (55)

where θi denotes the surface coverage of the solvent dipoles in the ith orientational
state; the surface coverage of adsorbate is θ = 1 − Σθi and aij is the short-range
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interaction constant composed of JAA, Jss, JAs etc. as defined above in Eqs. (38a)–
(38c) all the way through (17a)–(17c). Using the criterion ( ∂θ

∂σM )cA = 0 at σM
max, a

general model for 〈ξmax〉 is given below and hence σM
max:

〈ξmax〉 =

∑
i

(
∆pi

[(1/θi)−2aii+2
P

i�=j aij]

)
∑

i

(
∆α

[(1/θi)−2aii+2
P

i�=j aij]

) . (56)

For the case of the three-state site parity model, i = 1, 2, and j = 1, 2, are to be
substituted in Eqs. (55) and (56) and hence two nonlinear algebraic equations have
to be solved simultaneously to get 〈ξmax〉 (see Appendix). The numerical evaluation
is rendered more difficult to estimate σM

max when orientational states (Ns) increase.
It can be noted further from Eq. (56) that the two-state site parity model with
short-range interactions do not show θ-dependence of σM

max, and the simplest model
in the hierarchy showing the coverage-dependent σM

max is the three-state site parity
model albeit under molecular field approximation.

The functional dependence of 〈ξmax〉 on θmax, however for the three-state site
parity model if ps1 = ps2 = −ps can be written as

〈ξmax〉 =
1

∆α

[
ps

(θ1 − θ2) + 2(a11 − a22)θ1θ2

(θ1 + θ2) − [2(a11 + a22) − 4a12]θ1θ2
− pA

]
(57a)

or

〈ξmax〉 =
1

∆α

[
ps

(θ1 − θ2) + 8βLθ1θ2

(θ1 + θ2) − 8βJθ1θ2
− pA

]
. (57b)

When J = 0 and L = 0 and if θ1 and θ2 are substituted from Eq. (50a), then
equation (57b) yields

〈ξmax〉 =
1

∆α

[
ps

[exp(−β∆Us1) − exp(−β∆Us2) exp(2βps〈ξmax〉)]
[exp(−β∆Us1) + exp(−β∆Us2) exp(2βps〈ξmax〉)] − pA

]
. (58)

An interesting feature emerging from the above analysis is that an (Ns + 1)
state model with Ns > 2 incorporating only short-range chemical interactions and
excluding all dipole–dipole interactions, (in MFA) leads to a coverage-dependent
charge of maximum adsorption. The converse however is not true.

Although for the sake of clarity, results for a specific three-state site parity model
(with short-range interaction energies) are reported here, in particular, the inves-
tigation is on the conditions under which σM

max dependence is the key issue. The
size variation between the organic adsorbate and the solvent is the outcome for the
θmax dependence of (σM

max) as discussed in Refs. 17 and 22, and the short constants
ought to be functions of adsorbate size (or site), but it is yet to be analyzed. It is
to be noted that these equations are derived assuming the point dipoles.

Since phenomenological models may sometimes mask the reality of the phe-
nomenon and the conclusions drawn from them may not be wholly reliable, the anal-
ysis is restricted to molecular models here. For this reason, the analysis of Ref. 23
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generalized surface layer (GSL) empirical equation of Damaskin et al.21,24,25 and
the new empirical equations of Shuhmann,26 which predict a θ-dependent charge
of maximum adsorption, were not explored.

An elementary analysis of the two-state multisite model of Ref. 12, however
leads to a θ-invariant σM

max. This is further confirmed by the fact that adsorbates,
which show a coverage-dependent σM

max obey site parity adsorption isotherms.

6. Conclusions

It follows from the above analysis that incorporation of short-range chemical inter-
actions has a dominant role in influencing the surface coverage dependence of σM

max.
The dependence of the charge of maximum (σM

max) on the surface charge (θmax)
sometimes experimentally observed, can be accounted for, by the inclusion of short-
range (chemical) interaction energies. It is shown that a three-state site parity model
with short-range interaction energies (under MFA) is the lowest in the hierarchy of
multistate models that exhibit a coverage-dependent σM

max.

Appendix A: General Numerical Procedure

A general procedure is illustrated with the help of Eqs. (60) and (61) to obtain θ

and σM
max.

With the known values of relevant input molecular parameters (∆p1, ∆p2,

∆α, β1, β1), θk
1 and θk

2 are assumed initially. For the given value of short-range
constants (a11, a22, a12 = a21), with this guess value θk

1 and θk
2 , 〈ξk

max〉 is evaluated
using the following equation:

〈ξk
max〉 =

(
∆p1[

(1/θk
1) − 2a11 + 2a12

] + ∆p2[
(1/θk

2) − 2a22 + 2a21

])(
∆α[

(1/θk
1) − 2a11 + 2a12

] + ∆α[
(1/θk

2) − 2a22 + 2a21

]) , (A.1)

where θk
i denotes the surface coverage of the solvent dipoles in the ith orientational

state, the superscript k denotes the iteration counter. Using the values of 〈ξk
max〉, θk

1 ,
and θk

2 the next values θk+1
1 and θk+1

2 are evaluated for any given value of θ from
the following equations:

θk+1
1 = β1 exp

{
−β

[
∆p1〈ξk

max〉 − ∆α
〈ξk

max〉2
2

]}
exp[2a11θ

k
1 + 2a12θ

k
2 ](1 − θ),

(A.2)

θk+1
2 = β2 exp

{
−β

[
∆p2〈ξk

max〉 − ∆α
〈ξk

max〉2
2

]}
exp[2a21θ

k
1 + 2a22θ

k
2 ](1 − θ),

(A.3)

where the surface coverage of the adsorbate is θ = 1−Σθi and aij is the short-range
interaction constant composed of JAA, Jss, JAs etc. as defined in Eqs. (38a)–(38c)
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all the way through (17a)–(17c). The iteration is repeated until self-consistency is
reached. That is, θk

i − θk+1
i ≈ 0. For the given value of θ and 〈ξmax〉, the value of

σM
max can be computed from the following equation:

〈ξmax〉 =
4πσM

max +
ce

d3
pA +

ce

d3
[∆p1θ1 + ∆p2θ2]

1 +
ce

d3
αA +

ce

d3
[∆αθ1 + ∆αθ2]

. (A.4)

The entire process is repeated for different values of surface coverage of the
adsorbate.
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