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Microring electrodes are useful for the investigation of electrode kinetics due to their
large perimeter-to-area ratio and compact nature but have hitherto been limited in
application due to the absence of the underpinning theory. In this review, the analytical
solutions, approximate expressions, and numerical solutions of transient chronoampero-
metric current at a microring electrode under diffusion control are discussed. The steady
and non-steady-state current for microring electrode for an EC’ reaction are also dis-
cussed. Tabular compilations of dimensionless current are provided.

Keywords: Ring electrodes; chronoamperometry; reaction-diffusion; non-steady state-
EC’ reaction.

1. Introduction

Microelectrodes have many advantages in electrochemical measurements compared
with traditional macroelectrodes. These advantages include enhanced current den-
sity, small cell time constants and reduced ohmic drop, etc. Recently, microring
electrodes have received significant attention1–6 because of their wide range of
experimental applications. This is primarily because the large perimeter-to-area
ratio results in enhanced current density providing an ideal geometry for kinetic
measurements. The band and disk microelectrodes can be considered as two lim-
iting cases of a microring electrode.7 The current on a microring and microdisk
electrodes can approach a steady-state value while the current on a band micro-
electrode decays as the reciprocal logarithm of the time. The ring and disk geom-
etry microelectrodes are particularly attractive since they are easy to make and
can be fabricated in compact form. Like the band microelectrode, the ring micro-
electrode has a higher perimeter-to-area ratio than that of the disk microelectrode.
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Table 1. Comparisons of maximum error of various analytical and numerical results for
various values of γ.

Publication

Authors Ref. Equation γ = 1 γ = 3 γ = 10

Wu et al. 18 (22) 5.95% 2.76% 0.11%
Rajendran 25 (27) −0.73% 0.35% 0.19%
Dudko et al. 32 (29) −0.93% 0.65% 2.00%
Cope et al. (Integral equation method) 17 — 0.34% −0.70% −0.97%
Jin et al. (FAM) 23 — 0.70% −0.30% −0.39%
Brookes et al. (robust finite difference) 24 — 0.04% −0.57% −0.15%

Therefore, the significant increasing of mass transport rates to ring geometry com-
pared with that on disks leads to great convenience in analytical applications8,9 and
the measurement of kinetic parameters. As is evident from Table. 1 a substantial
amount of work has been done on modeling the microring electrodes.

The rotating disc (RDE) and the rotating ring-disk (RRDE) electrode10 are
very much useful in the studies of coupled homogeneous reaction and catalytic
reactions. The important advantage of these electrode is that a steady state is
attained rather quickly and measurements can be made with high precision, often
without the need for records of oscilloscope. Moreover, at steady state, double
layer charging does not enter the measurement. Also, the rates of mass transfer
at the electrode surface are typically larger than the rates of diffusion alone, so
that the relative contribution of mass transfer to electron-transfer kinetics is often
smaller. The theoretical treatments involved in these electrodes are more difficult
and involve solving a hydrodynamic problem (e.g. determining solution flow velocity
profile as a function of rotation rates, solution viscosities and densities) before the
electrochemical one can be tackled. Rarely, closed form or exact solutions can be
obtained. This electrode is amenable to rigorous theoretical treatment and is easy to
construct with a variety of electrode material. It is the most convenient and widely
used electrode by the experiments.10 This review does not deal with analytical and
numerical solutions of RDE (or) RRDE.

However, theoretical studies of electrochemical behavior of microring electrode
are complicated by the mixed boundary conditions, which exist on the surface
containing the electrodes. As a result, complete analytical solutions to the diffu-
sion problem are extremely difficult or even impossible to obtain. To date such
investigations have been based on analytical or semi-analytical approaches. Closed
analytical expressions for the electrode current have been published by several
authors in the “thin ring” limit,11–14 following the work of Smythe.15 The major-
ity of these methods implement a constant flux approximation at the electrode
surface. Results that do not use this assumption have been presented recently in
the work by Phillips and Stone,16 Tallman et al.,17 and Wu and Zhang.18 Tallman
reports the most complete set of results using an integral-equation method,17–19

and details data for chronoamperometry,27 linear-sweep voltammetry,20 and even
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square-wave voltammetry22 experiments. Jin et al.23 used the finite analytical
numerical method (FAM) to study the diffusion problems at microring electrodes.
Kalapathy et al.7 and Cope et al.17 have calculated the transient diffusion lim-
ited current by integral-equation method over significant time intervals for the
full range of significant ring sizes. Recently, Brookes et al.24 present a general,
robust method for the numerical solutions of steady-state, chronoamperometric,
and linear-sweep voltammetry experiments at the ring electrodes of intermediate
thickness. Recently, Rajendran25 derived the transient and steady-state chronoam-
perometric current for the first-order EC’ reactions at microring electrode. A new
approach for the numerical solution of the microring electrode problem by the
conform mapping technique was introduced in the work of Amatore et al.26 More
recently, Svir et al.27 presented the numerical results of chronoamperometric cur-
rent at microring electrode for ECE mechanism using the same conformal mapping
technique.

Since this review aims at the theoretical comprehension of microring electrodes,
various detailed numerical techniques are not discussed here. This review describes
accurate analytical expression of current for ring electrode for diffusion-limited reac-
tion and EC’ reaction. It is our aim that this short review will act as an introduction
to the reader who may be interested in pursuing research in this area.

2. Mathematical Formulation and Analysis of Non-Steady State
Diffusion Limited Current at Microring Electrodes

We consider a simple electron transfer reaction taking place at the ring electrode
surface25

A ± e− → B (1)

with an applied potential step sufficient to achieve diffusion-controlled conditions
(viz. cA = 0) at the electrode surface, A being the only species initially present
in the solution at the concentration c∗0. The time-dependent equation, describing
the mass-transport of the species B from the electrode surface to the bulk of the
solution, is

∂c

∂t
= D

[
∂2c

∂r2
+

1
r

∂c

∂r
+

∂2c

∂z2

]
, (2)

where c denotes the concentration of B. D is the diffusion coefficient of B; t is the
time elapsed since the beginning of the potential step; r and z are the cylindrical
coordinates describing the semi-infinite space located above the insulating plane
in which the electrode is embedded (Fig. 1). The potential step is applied to the
electrode at time t = 0 and the related initial condition for the concentration of the
species B is

c(r, z, 0) = 0, 0 ≤ r ≤ ∞, 0 ≤ z ≤ ∞. (3)
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Fig. 1. Diagram illustrating the geometry of microring electrode.

The boundary conditions to the partial differential equation (2), corresponding to
the diffusion-controlled electrolysis,26 are

∂c

∂z

∣∣∣∣
z=0

= 0 0 < r < rin and r > rout, (4a)

c = C0 rin ≤ r ≤ rout, (4b)

∂c

∂r

∣∣∣∣
r=0

= 0 0 ≤ z < ∞, (4c)

c → 0 z → ∞, r → ∞, (4d)

where rin is the inner radius and rout is the outer radius of the ring, C0 is the
concentration of species B at the electrode surface (i.e. C0 = c∗0 when the two
diffusion coefficients of A and B are equal). We normalize the spatial co-ordinates
r and z with respect to the outer ring radius:

R =
r

rout
, Z =

z

rout
(5)

and As in Ref. 26, a dimensionless time T can be introduced

T =
Dt

r2
out

. (6)

Then, introducing the dimensionless concentration: C = c/c0, we can rewrite
Eq. (2) as

∂C

∂T
=

∂2C

∂R2
+

1
R

∂C

∂R
+

∂2C

∂Z2
. (7)

The initial condition equation (3) becomes

C(R, Z, 0) = 0, (8)
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and the boundary conditions (4a)–(4d) now are

∂C

∂Z

∣∣∣∣
Z=0

= 0 0 < R < a and R > 1, (9a)

C = 1 a ≤ R ≤ 1, (9b)

∂C

∂R

∣∣∣∣
R=0

= 0 0 < Z < ∞, (9c)

C → 0 Z → ∞, R → ∞, (9d)

where a = rin/rout.

We consider a single electron transfer (n = ±1), so that the current passing at
the electrode surface at any time is given by the following expression:

I(T ) = ±2πFD

∫ rout

rin

∂c

∂z

∣∣∣∣
z=0

rdr, (10)

where the sign “plus” corresponds to a reduction process (n = 1), while the sign
“minus” corresponds to an oxidation (n = −1). The transient current is rewritten
as a function of the dimensionless variables as follows:

I(T ) = ±2πFDC0rout

∫ 1

a

∂C

∂Z

∣∣∣∣
Z=0

RdR, (11)

so that the dimensionless current (flux) is readily expressed as in Ref. 26

ψ(τ = Dt/(rout − rin)2) =
|I(τ)|

4FDC0rout
=

π

2

∫ 1

0

∂C

∂Z

∣∣∣∣
Z=0

RdR. (12)

2.1. Short-time current expression

Short-time diffusion limited current for more planar geometries were determined by
Oldham28 and Phillips and Jansons.29 The short-time current can be written as

i = nFDC0

[
A√
πDt

+
P

2
+

1
2
(m − n)

√
πDt + · · ·

]
t → 0, (13)

where F is the Faraday’s constant, D is the diffusion coefficient of electroactive
substrate, n is the charge number of the electrode reaction, and C0 is the bulk
concentration of the electroactive species. A is the area of the electrode, P is the
perimeter, and t denotes the time. m is the number of separate pieces it comprises
and n denotes the number of “holes” in them. Ring shape (thickness) is denoted17

by the dimensionless parameter γ, and defined as the ratio of the average of the
inner and outer ring radii to the ring thickness.

γ =
rout + rin

2(rout − rin)
. (14)
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This γ variable was first introduced by Cope et al.17 A disc has γ = 1/2 and a
band has γ = ∞. If appropriate values for A and P pertaining to ring geometry
are substituted in Eq. (13), we obtain the first two terms of short-time expression.
For ring electrodes A = π(r2

out − r2
in) and P = 2π(rin + rout) and m = n = 1.

Consequently, Eq. (13) becomes

ψ(τ = DBt/(rout − rin)2) = a0τ
−1/2 + a1 τ → 0, (15)

where

a0 =
√

πγ
/
(2γ + 1), a1 = πγ/(2γ + 1). (16)

2.2. Long-time current expression

For long time, Szabo’s result13 is expressed as

i(t)/nFDC0 = l0 + l20

/
(4π3Dt)1/2, (17)

where l0 is the steady-state limit of the electrode. Phillips30 has reported the next
term in Eq. (17) using the method of matched asymptotic expansions. Equation (17)
can be written in the form

ψ(τ = Dt/(rout − rin)2) = b0 + b1τ
−1/2, (18)

where

b0 = l0/4rout, b1 = (2γ + 1)b2
0

/
π3/2, (19)

where the steady-state value of l0 for thin ring is15(
l0

rout

)
exact

=
2π2γ

(γ + 1/2)In(32γ)
where γ > 1/2. (20)

For ring of arbitrary thickness, Szabo’s13 approximate version of Eq. (20) is refor-
mulated as (

l0
rout

)
empirical

=
4π2γ

/
(2γ + 1)

In[32(γ − 1
/
2) + exp(π2/4)]

∀ γ. (21)

2.3. All time current expression

Some analytical work has also been published for chronoamperometric current for
all time and all values of γ for ring electrode. Wu et al.18 states that Eq. (22) is
applicable to any radius of ring and at any time.

ψ(τ) =
πγ

2γ + 1

[
1√
πτ

+
H
√

τ + γ + 0.5√
πτ + γ + 0.5

]
, (22)
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where

H = π3/2/In[32γ] where γ > 1/2 (23)

H equates to Szabo’s l0 in Eq. (21) as

H =
√

πl0
/
rout. (24)

Rajendran and Sangaranarayanan31 using the previous asymptotic expressions
(15) and (18), constructed the following Pade approximation:

ψ(τ) =
[
p0 + p1τ

−1/2 + p2τ
−1 + p3τ

−3/2

1 + q1τ−1/2 + q2τ−1

]
, (25)

where

p0 = b0, p1 = a0 + a1q1, p2 = a0q1 + a1q2, p3 = a0q2,

q1 =
a0 − b1

b0 − a1
, q2 = q2

1 .
(26)

Among several options available for constructing a suitable function, given
partial information, the Pade approximation is one of the simplest and is easy
to implement. Pade approximate gives a remarkable good representation of the
whole current function for all values of time. Hence Pade approximation is a
closed an accurate, and a powerful but in the end still mysterious mathemati-
cal technique. Hence this technique is widely analyzed in phase transitions and
critical phenomena, viral equations of state, quadratic anharmonic oscillators and
ultramicroelectroded.31 Recently, Rajendran25 constructed a simple and closed
empirical expression (Eq. (27)) of current for all time and for all values of γ.

ψ(τ) = A1 + B1τ
−1/2 + C1 exp(−D1τ

−1/2), (27)

where

A1 = a1, B1 = a0, C1 = b0 − a1, D1 =
∣∣∣∣a0 − b1

b0 − a1

∣∣∣∣ . (28)

The accuracy of rational function approximation given above (Eq. (25)) can be
improved by considering higher order terms in short and long time solutions. But
this is not possible in the above empirical expression (Eq. (27)). More recently
Dudko et al.32 obtained the analytical expression (Eq. (29)) of current for microring
electrode.

ψ(τ) =
1
4

[
l0

rout
+

(
4πγ

1 + 2γ
− l0

rout

)
eN2TDerfc(N

√
TD) +

√
π8γ2

√
TD(1 + 2γ)2

]
, (29)

where

|N | =
2π

[(
4πγ

1 + 2γ

)
− l0

rout

]
[

l20
r2
out

−
(

16π2γ

(1 + 2γ)2

)] (30)
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and

TD =
4τ

(1 + 2γ)2
. (31)

2.4. Numerical solutions

The application of numerical solutions and digital simulations to electrochemical
problems are discussed in Refs. 33 and 34. The integral equation approach has been
consistently taken by the Cope and Tallman group for the modeling of microring
electrode behavior; this work continues,17 also elsewhere.35 The potential advan-
tage of the method are high efficiency (due to direct calculation of the flux at the
electrode surface rather than the intermediate calculation of concentration over
the cell interior, with further simplification because only the integral of the flux
is needed) and a unified numerical approach to a broad range of electrochemical
diffusion-problems. Jin et al.23 used the finite analytical numerical method (FAM)
combined with a conformal map to study the diffusion problem, at microring elec-
trode. As a result, this method has the flexibility to adapt to a number of electrode
geometries and exhibits high computational efficiency. Brookes et al.24 presented
a robust finite difference numerical method for the simulation of electrochemical
processes at microring electrode of intermediate thickness. This method relies on a
meshing strategy to minimize the electrode flux errors (Table 2).

2.5. Discussion

Tables 3–5 indicate the dimensionless chronoamperometric current for ring electrode
using Eq. (25) together with the analytical results of (i) Wu and Zhang,18 (ii)
Rajendran,25 (iii) Dudko et al.32 and numerical results of (iv) Cope et al.,17 using
integral equation method (v) Jin et al.,23 using FAM method and (vi) Brookes
et al.24 using robust finite difference method. All these data are compared in Figs. 2–
4. The data are shown using the differences from the Pade approximation results of
Rajendran and Sangaranarayanan.31 The maximum error of all the analytical and
numerical results are given in Table 1.

3. Mathematical Formulation and Analysis of Non-Steady-
and Steady-State Current at Microring Electrodes for
An Ec’ Reaction

As a representative example of the reaction-diffusion problems considered, the stan-
dard pseudo-first-order catalytic reaction scheme.36

A ± e− → B,

B + Z
K→ A + Products

(32)

has been chosen, with initial and boundary conditions corresponding to potential-
step method for the ring electrode.
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Table 2. Voltammetric theory for microring electrode.

Publication
Experimental Modeling

Authors Ref. Technique Kinetics Method

Amatore et al. 26 Chronoamperometry
and linear sweep
voltammetry

E Conformal mapping

Brookes et al. 24 Steady state
chronoamperometry
and linear sweep
voltammetry

E Robust finite difference
numerical method

Cope et al. 19, 20 Chronoamperometry E Integral equation
Dudko et al. 32 Chronoamperometry E Analytical
Oldham JEC, 297,

(1991), 3117
Voltammetry E Analytical

Fleishmann 11, 12. Chronoamperometry E Analytical Neumann
integral theorem

Gavaghan JEC, 456,
(1998), 1.

Chronoamperometry E Exponential expanding
mesh/Expanding grid

Irina Svir et al. JEC, 578,
(2005), 289.

Chronoamperometry ECE Conformal mapping

Kalapathy et al. 7 Linear sweep
voltammetry

E Integral equation

Phillips et al. JEC, 303,
(1991), 1. 29

Chronoamperometry E Analytical

Rajendran and
Sangaranarayanan
Rajendran

25, 31,
E. Analysis,
10, (1998),

506.

Chronoamperometry
Chronoamperometry
(reversible electron
transfer reaction)

Diffusion limited
current

E
E

EC’

Pade approximation
Pade approximation
Danckwerts’ expression

Smythe et al. 15 Chronoamperometry E Analytical
Symanski et al. JEC. Soc, 135,

(1988), 1985.
14

Chronoamperometry E Experimental

Szabo 13 Chronoamperometry E Analytical
Tallman 22 Square wave

voltammetry
E Integral equation

Wu et al. 18 Chronoamperometry E Analytical

3.1. Non-steady-state current at microring electrodes

The initial boundary value problem which has to be solved in this case can be
written in dimensionless forms as follows:36

∂cB

∂T
=

∂2cB

∂r2
+

1
r

∂cB

∂r
+

∂2cB

∂z2
− KcB, (33)

where cB (= CB/c∗A) denotes the dimensionless concentration of the electro-active
species B, K and T denotes the dimensionless reaction rate and time, i.e. K =
kr2

in/DB and T = DBt/r2
out (rin and rout may be identified as the inner and outer

radius for a ring electrode). z and r are the cylindrical coordinates normalized with
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Table 3. Comparison of various results for dimensionless current for ring electrode for various
values of τ when γ = 1.

Analytical Numerical Solution

Integral
Pade Appr.31 Wu et al.18 Ref. 25 Dudko et al.32 Equation Robust Finite

Log(τ) Eq. (25) Eq. (22) Eq. (27) Eq. (29) Method17 FAM23 Difference24

−2.00 41.730 41.600 41.731 41.932 41.740 41.520 41.867
−1.50 26.208 26.000 26.223 26.296 26.160 26.118 26.249
−1.00 17.454 17.151 17.482 17.573 17.300 17.244 17.374
−0.50 12.468 12.084 12.538 12.737 12.210 12.138 12.205

0.00 9.516 9.146 9.713 9.693 9.305 9.282 9.320
0.25 8.538 8.171 8.789 8.779 8.418 8.376 8.445
0.50 7.824 7.423 8.090 8.087 7.789 7.752 7.811
0.75 7.320 6.850 7.560 7.562 7.327 7.320 7.347
1.00 6.954 6.410 7.160 7.163 6.986 6.960 7.005
1.25 6.696 6.074 6.857 6.860 6.734 6.702 6.752
1.50 6.504 5.818 6.629 6.631 6.535 6.510 6.563
1.75 6.360 5.624 6.457 6.459 6.398 6.384 6.423
2.00 6.252 5.476 6.328 6.329 6.290 6.270 6.318

Table 4. Comparison of various results for dimensionless current for ring electrode for various
values of τ when γ = 3.

Analytical Numerical Solution

Integral
Pade Appr.31 Wu et al.18 Ref. 25 Dudko et al.32 Equation Robust Finite

Log(τ) Eq. (25) Eq. (22) Eq. (27) Eq. (29) Method17 FAM23 Difference24

−2.00 125.118 124.829 125.192 124.778 125.300 124.782 125.375
−1.50 78.442 78.013 78.619 77.729 78.750 78.372 78.649
−1.00 51.940 51.049 52.065 51.237 52.490 52.276 52.387
−0.50 36.526 36.041 36.452 35.938 37.480 37.380 37.439

0.00 27.202 26.874 26.983 26.811 28.430 28.392 28.399
0.25 23.968 23.695 23.745 23.692 25.110 25.032 25.073
0.50 21.420 21.151 21.230 21.252 22.310 22.218 22.237
0.75 19.432 19.098 19.288 19.338 19.960 19.908 19.891
1.00 17.892 17.433 17.795 17.850 18.120 18.004 18.095
1.25 16.716 16.084 16.653 16.699 16.790 16.702 16.786
1.50 15.834 14.994 15.784 15.817 15.850 15.778 15.837
1.75 15.148 14.122 15.124 15.147 15.160 15.092 15.142
2.00 14.644 13.429 14.625 14.640 14.630 14.560 14.627

respect to the electrode outer radius rout. The conditions pertaining to Eq. (33) are
cB = 0 when T → 0 and cB = 0 when r → ∞. The mixed boundary conditions are
cB = c∗A on the electrode surface and (∂cB/∂z)z=0 = 0 on the insulated base. Here,
c∗A denotes the initial bulk concentration of species A. Assuming DB = DA and
semi-infinite diffusion leads to cA + cB = c∗A. This means that we need only solve
the system for cB. We now use φ to denote the normalized current or flux. For ring
electrodes, this is obtained by dividing the measured current by the steady-state
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Table 5. Comparison of various results for dimensionless current for ring electrode for various
values of τ when γ = 10.

Analytical Numerical Solution

Integral
Pade Appr.31 Wu et al.18 Ref. 25 Dudko et al.32 Equation Robust Finite

Log(τ) Eq. (25) Eq. (22) Eq. (27) Eq. (29) Method17 FAM23 Difference24

−2.00 417.270 416.781 417.312 417.850 417.700 416.64 416.080
−1.50 262.038 261.198 262.243 260.917 262.500 261.786 260.800
−1.00 174.451 173.222 174.916 172.696 175.000 174.258 173.661
−0.50 124.698 122.942 125.512 121.620 125.100 124.572 124.249

0.00 95.298 93.398 95.841 92.093 95.540 94.920 94.756
0.25 84.840 83.204 84.806 81.749 85.090 84.174 84.296
0.50 76.104 74.961 75.609 73.227 76.470 75.978 75.723
0.75 68.628 68.115 67.666 66.188 69.230 68.670 68.574
1.00 62.076 62.275 60.931 60.232 63.080 62.664 62.505
1.25 56.406 57.178 55.313 55.163 57.730 57.372 57.220
1.50 51.618 52.670 50.710 50.862 52.920 52.626 52.468
1.75 47.670 48.669 47.003 47.267 48.670 48.384 48.215
2.00 44.520 45.143 44.064 44.327 45.050 44.814 44.672

Fig. 2. Comparison of percentage difference in dimensionless diffusion limited current with Pade
approximation (Eq. (25)) when γ = 1. (a) Wu et al.17 Eq. (22), (b) Eq. (27), Ref. 24, (c) Dudko
et al.31 (Eq. (29)), (d) integral equation method,16 (e) FAM,22 (f) robust finite difference.23

current expected at very thick ring electrode (rin → 0) with same bulk conditions
and no homogeneous reaction.36

φ ≡ I

4nFDAc∗Arout
= ±π

2

∫ 1

rin/rout

[
∂cB

∂z

]
z=0

rdr, (34)



November 16, 2007 16:30 WSPC/178-JTCC 00337

710 L. Rajendran, G. Rahamathunissa & C. A. Basha

Fig. 3. Comparison of percentage difference in dimensionless diffusion limited current with Pade
approximation (Eq. (25)) when γ = 3. (a) Wu et al.17 Eq. (22), (b) Eq. (27) Ref. 24, (c) Dudko
et al.31 (Eq. (29)), (d) integral equation method,16 (e) FAM,22 (f) robust finite difference.23

Fig. 4. Comparison of percentage difference in dimensionless diffusion limited current with Pade
approximation (Eq. (25)) when γ = 10. (a) Wu et al.17 Eq. (22), (b) Eq. (27), Ref. 24, (c) Dudko
et al.31 (Eq. (29)), (d) integral equation method,16 (e) FAM,22 (f) robust finite difference.23
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where the sign “plus” corresponds to a reduction process (n = 1) while the sign
“minus” corresponds to an oxidation process (n = −1) and F is the Faraday con-
stant and DA is the diffusion coefficient of species A. A general relationship, arising
from Danckwerts’36 expression allows the computation of the transient limiting
current for an EC’ reaction, from the limiting currents at the same electrode when
there is a no homogeneous reaction. Using the Danckwerts’ expression, Rajendran25

obtain the current for EC’ reaction for ring electrode

φ(τ) = a1 + a0

[√
πKerf(

√
Kτ) + e−Kττ−1/2

]
τ → 0, (35)

φ(τ) = b0 + b1

[√
πKerf(

√
Kτ) + e−Kττ−1/2

]
τ → ∞, (36)

φ(τ) = A1 + B1[
√

πKerf(
√

Kτ) + e−Kττ−1/2] + C1

[
K

∫ τ

0

exp(−D1/u1/2

−Ku)du + exp(−D1τ
−1/2 − Kτ)

]
all τ. (37)

The values of a0, a1, b0, b1, A1, B1, C1 and D1 are given in Eqs. (16), (19) and (28),
respectively. Equations (35) and (36) represents the transient current for EC’ reac-
tion for ring electrode. When γ = 0.5 (disc electrode), Eq. (37) becomes

φ(τ) = 0.7854 + 0.4431
[√

πKerf(
√

Kτ) + e−Kττ−1/2
]

+ 0.2146
[
K

∫ τ

0

exp(−0.39115/u1/2 − Ku)du

+ exp(−0.39115τ−1/2 − Kτ)
]
. (38)

It is the chronoamperometric current for disc electrode for EC’ reaction.
Equation (38) is identical with Eq. (40) of Ref. 33.

3.2. The steady-state current at a microring electrodes

The initial boundary value problem which has to be solved in this case can be
written in dimensionless form as follows36,37:

∂2cB

∂r2
+

1
r

∂cB

∂r
+

∂2cB

∂z2
= KcB, (39)

where cB refers to the dimensionless concentration of the electroactive species B and
K denotes the dimensionless reaction rate (K = kr2

in/DB). The mixed boundary
conditions are given by cB(r, 0) = 1 on the electrode surface and (∂cB/∂z)z=0 = 0
on the insulated surface. The other condition pertaining to Eq. (39) is cB(∞, z) = 0.
The current for the diffusion-limited case is evaluated from Eq. (39). The calcula-
tion of the current for a pseudo-first-order EC’ process, where the electroactive
species is regenerated by a chemical reaction following the electron transfer process
is mathematically equivalent to the calculation of the Laplace transform of the cur-
rent in a transient problem.34 Using this equivalence, from known solutions for the
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short- and long-time transients of the diffusion limited current for a disc electrode
in the absence of chemical reactions, Phillips derived the asymptotic expression for
the steady-state current for a pseudo-first-order EC’ reactions, when the dimen-
sionless reaction rate is either very large or very small. Using the same equivalence,
Rajendran obtain the steady-state current for ring electrode for EC’ reaction for
large and small values of K.25

φss(K) =
I

4nFDAc∗Arout
= a0

√
πK + a1 + O(K−1/2) K → ∞, (40)

φss(K) =
I

4nFDAc∗Arout
= b0 + b1

√
πK + O(K) K → 0, (41)

where a0, a1, b0, b1 are defined in Eqs. (16) and (19). When γ = 1/2 (disc) the above
equation are identical with Eqs. (20) and (19) of Ref. 34. It is of interest to devise a
simple analytic expression for φss(K) which is accurate for all values reaction rate.
The empirical expression25

φss(K) =
I

4nFDAc∗Arout
= A + BK1/2 + C exp(−DK1/2), (42)

where
A = a1 = πγ/(2γ + 1),

B = a0
√

π = πγ/(2γ + 1),

C = b0 − a1 =
l0

4rout
− πγ

2γ + 1
,

D =
√

π(a0 − b1)
b0 − a1

=

πγ

2γ + 1
− (2γ + 1)(l0/rout)2

16π

C

(43)

reproduces the first two terms of large and small K (reaction rate) expression. It is
the simple and closed analytical expression of steady-state current for ring electrode
for all reaction rate.

4. Conclusions

Thus, it can be seen that in the past decade, considerable progress has been made
in the understanding of diffusion process at microring electrodes. This paper has
reviewed the theory of mass transport at microring electrodes under diffusion lim-
ited reaction and electrochemical reaction. The non-steady-state current at micror-
ing electrodes has also been discussed with different headings such as short-time
current expression, long-time current expression and all-time current expression.
The steady- and non-steady-state current at microring electrodes for EC’ reactions
have also been reviewed. This article is very useful for the application of microring
electrodes in analytical and molecular electrochemistry. This review may be of use
to some experimental researchers and few specialized electroanalytical chemists.
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