

Materials Science and Engineering B 139 (2007) 55-61



www.elsevier.com/locate/mseb

# Single step preparation of $CeO_2/CeAlO_3/\gamma$ -Al<sub>2</sub>O<sub>3</sub> by solution combustion method: Phase evolution, thermal stability and surface modification

A.S. Prakash<sup>b</sup>, C. Shivakumara<sup>a</sup>, M.S. Hegde<sup>a,\*</sup>

<sup>a</sup> Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India <sup>b</sup> Functional Materials Division, Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu, India

Received 2 September 2006; received in revised form 4 January 2007; accepted 20 January 2007

#### Abstract

Phase evolution of  $CeO_2/\gamma$ -Al<sub>2</sub>O<sub>3</sub> system synthesized from single step solution combustion method is examined here. The nominal compositions of ceria and alumina in  $(CeO_2)_x/(Al_2O_3)_{1-x}$  are varied from x = 0.0 to 0.66 to yield end compositions,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> to stoichiometric CeAlO<sub>3</sub> phase. For the composition x = 0, the phase formed is  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, and for x = 0.2, CeAlO<sub>3</sub> is formed over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. As the cerium content increased beyond x = 0.2, CeO<sub>2</sub>/CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> oxides are formed. Heating CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> in air above 700 °C resulted in transformation to CeO<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and the subsequent reduction in H<sub>2</sub> gave back CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. TEM studies showed CeAlO<sub>3</sub> crystallites growth on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and the oxidized sample showed CeO<sub>2</sub> formation over CeAlO<sub>3</sub>, which in turn interfaced with  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> phase. XPS analysis of CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> over CeAlO<sub>3</sub> is demonstrated in the study, where adhesion of CeO<sub>2</sub> over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is via CeAlO<sub>3</sub> phase at the interface. © 2007 Elsevier B.V. All rights reserved.

Keywords: Solution combustion synthesis; CeAlO3; Cerium oxides; Solid-solid interfaces

#### 1. Introduction

The CeO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> system is of special interest in catalysis because of its technological importance in auto exhaust catalysis. Ceria is an active component of auto exhaust catalyst which is known to improve catalyst performance and also have following beneficial effects: (a) CeO<sub>2</sub> improves dispersion of noble metal [1-3]; (b) it improves thermal stability of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> towards thermal sintering [2,4]; (c) enhances oxygen storage capacity (OSC) of the catalyst [2,5,6]; (d) enhances water-gas shift reaction [1,7] and (e) helps in decomposition of nitrogen oxides [8]. For ceria to serve as an oxygen storage component, it is essential that the reversible reaction between  $Ce^{4+}$  and  $Ce^{3+}$  takes place easily [2,9]. Haneda et al. [10] have reported the preparation of three kinds of cerium oxides, CeO2, CeO2-x/Al2O3 and CeAlO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> and they have showed a decrease in OSC value in the order finely-divided  $CeO_{2-x} > CeAlO_3 > small$ sized  $CeO_2$  > large  $CeO_2$  crystallites. Shyu et al. [11] and Normand et al. [12] have reported that when ceria is dispersed

0921-5107/\$ – see front matter C 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.mseb.2007.01.034

on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> a large fraction of the cerium ions appear to be in the +3 state without any reducing atmosphere, such as H<sub>2</sub>. Though equilibrium solubility of CeO<sub>2</sub> in Al<sub>2</sub>O<sub>3</sub> is limited, formation of CeAlO<sub>3</sub> phase is possible on the surface. Reduction of ceria on alumina in H<sub>2</sub> involves at least two reactions, namely, formation of non-stoichiometric cerium oxides [9,13] and cerium aluminate (CeAlO<sub>3</sub>), depending on ceria loading [13,14].

Ways to improve the three-way catalysts performance could be devised if a better understanding could be gained on the interaction of ceria with alumina and the way it influence the properties of noble metal dispersion. Here we report the structural evolution of phases with ceria loading over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> during the combustion synthesis and their thermal stability and surface modification on oxidizing and reducing atmospheres.

#### 2. Experimental

## 2.1. Synthesis

All the samples studied here are prepared by solution combustion method. The method involves exothermic redox reaction between oxidizers, generally metal nitrates and an organic fuel to yield the final product. The stoichiometry of metal nitrates to fuel

<sup>\*</sup> Corresponding author. Tel.: +91 80 2293 2614; fax: +91 80 2360 1310. *E-mail address:* mshegde@sscu.iisc.ernet.in (M.S. Hegde).

is calculated assuming the complete combustion to yield corresponding metal oxide and  $CO_2$ ,  $N_2$ ,  $H_2O$  as by-products [15,16]. For example, chemical reaction for the formation of  $CeO_2$  and  $Al_2O_3$  using corresponding metal nitrates and oxalyldihydrazide (ODH) can be written as follows.

$$2Ce(NO_3)_3 + 3C_2H_6N_4O_2 + \frac{1}{2}O_2(\text{from air})$$
  

$$\rightarrow 2CeO_2 + 6CO_2 + 9N_2 + 9H_2O$$
(1)

Similarly,

$$2AI(NO_3)_3 + 3C_2H_6N_4O_2 \rightarrow Al_2O_3 + 6CO_2 + 9N_2 + 9H_2O$$
(2)

Typical synthesis for the phases studied here are as follows.

2.1.1.  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>

 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> has been prepared by the combustion of a redox mixture containing Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O and oxalyldihydrazide C<sub>2</sub>H<sub>6</sub>N<sub>4</sub>O<sub>2</sub> (ODH). In a typical preparation, 10 g of Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O and 3.8 g (80% of stoichiometric amount) of ODH were dissolved in 15 cm<sup>3</sup> of water in a borosilicate dish of 130 cm<sup>3</sup> capacity. The resulting solution obtained was introduced into a muffle furnace preheated to 500 °C. The solution boiled with frothing and ignited into a flaming combustion to yield a voluminous product.

## 2.1.2. $(CeO_2)_x/(\gamma - Al_2O_3)_{1-x}$

The compounds  $(CeO_2)_x/(\gamma-Al_2O_3)_{1-x}$  (x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40 and 0.66), were synthesized by the combustion of required mole ratios of  $Ce(NO_3)_3 \cdot 6H_2O$ ,  $Al(NO_3)_3 \cdot 9H_2O$  and stoichiometric amount of fuel, ODH. For the preparation of the compound with composition, say x = 0.2, a mixture of  $Al(NO_3)_3 \cdot 9H_2O$ ,  $Ce(NO_3)_3 \cdot 6H_2O$  and ODH in the mole ratio of 1.6:0.2:2.7 was taken in a borosilicate dish of  $130 \text{ cm}^3$  capacity. The reactants were dissolved in  $15 \text{ cm}^3$  of water and introduced into a preheated muffle furnace at  $500 \,^\circ\text{C}$ . The solution boiled with frothing and ignited to burn with a flame yielding a voluminous solid product within 5 min. When  $(CeO_2)_x/(\gamma-Al_2O_3)_{(1-x)}$  (x=0.2) was taken, CeAlO<sub>3</sub> phase was formed as will be shown later.

The experiments are carried out in air. The organic fuels used in solution combustion method, viz., oxalydihydrazide (ODH), has nitrogen and carboxylic groups which forms complexes with cations and anions in solution. The complexes decompose exothermically with evolution of CO<sub>2</sub>, N<sub>2</sub> and H<sub>2</sub>O. For the stoichiometric reactions this has been confirmed by mass spectrometry, and hence Eqs. (1) and (2) are correct. Evolution of N<sub>2</sub> from the N-containing ligand is the main reason for higher release of heat. Instant decomposition of metal nitrates give NO<sub>2</sub> instead of N<sub>2</sub>. Therefore, solution combustion method is different from NO<sub>3</sub> decomposition [16].

The X-ray diffraction (XRD) patterns of the phases studied here were recorded on a Siemens D5005 diffractometer using Cu K $\alpha$  radiation. Transmission electron microscopic (TEM) studies of powders were carried out using a JEOL JEM-200CX transmission electron microscope operated at 200 kV. X-ray



Fig. 1. Powder X-ray diffraction pattern of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>.

photoelectron spectra (XPS) of the samples were recorded on an ESCA-3 Mark II spectrometer (VG Scientific Ltd., England) using Al K $\alpha$  radiation (1486.6 eV). Binding energies were calculated with respect to C(1s) at 285 eV and measured with a precision of  $\pm 0.2$  eV. BET surface area of the samples was determined using Quantachrome NOVA 1000 surface area analyzer by nitrogen adsorption–desorption method at liquid nitrogen temperature.

# 3. Results and discussion

### 3.1. Structural studies

Fig. 1 shows XRD pattern of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> synthesized by the combustion method. The pattern can be indexed to cubic phase with a = 7.912(4) Å. The pattern agrees well with that of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> reported by Zhou and Snyder [17]. It should be noted here that combustion of Al(NO<sub>3</sub>)<sub>3</sub> and urea yields  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> [18]. However, with the fuel ODH used here yielded  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and a small amount  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> with stoichiometric Al(NO<sub>3</sub>)<sub>3</sub> and ODH. When stoichiometric redox mixture is used maximum heat is generated. With slightly lower amount of fuel (80%), heat generated is low yielding only  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. This is how pure  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is obtained. However, for pure CeO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> composition, exact stoichiometry of nitrate and fuel is used in this study. The stabilization of meta-stable  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> during this process could be attributed to the relatively lower temperature reached during the combustion of Al(NO<sub>3</sub>)<sub>3</sub> and ODH redox mixture.

The XRD patterns of combustion synthesized  $(CeO_2)_x/(\gamma - Al_2O_3)_{1-x}$  varying x from 0.05 to 0.66 are presented in Fig. 2(a–h). For x = 0, 0.05 and 0.1,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> diffraction lines are prominent. Further increase in CeO<sub>2</sub> mole percentage leads to the stabilization of CeAlO<sub>3</sub> phase. For x = 0.15 sample, diffraction lines due to CeAlO<sub>3</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> are seen. Diffraction pattern for x = 0.2 (Fig. 2(d)) show lines mainly due to CeAlO<sub>3</sub> and the pattern is indexed to cubic CeAlO<sub>3</sub> phase.  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is another phase that is present as can be seen from (4 4 0) diffraction lines. With increasing x from 0.2 to 0.4, diffraction lines



Fig. 2. X-ray diffraction patterns of  $(CeO_2)_x(Al_2O_3)_{1-x}$ ; where x is (a) 0.05, (b) 0.10, (c) 0.15, (d) 0.20, (e) 0.25, (f) 0.30, (g) 0.40 and (h) 0.66.

corresponding to CeO<sub>2</sub> appear along with those of CeAlO<sub>3</sub>. For x = 0.66 (Fig. 2(h)), CeO<sub>2</sub> lines are prominent.

CeAlO<sub>3</sub> has been reported to crystallize in different structures depending on the synthetic conditions followed. Mizuno et al. [19] have reported the CeAlO<sub>3</sub> phase close to ideal cubic perovskite structure with lattice parameter a = 3.760 Å. Shishido et al. [20] have reported the CeAlO<sub>3</sub> structure of tetragonal symmetry with a = 3.7669(9) Å and c = 3.7967(7) Å, while Kim [21] reported it to be crystallizing in rhombohedral symmetry with a = 5.327 Å and  $\alpha = 60.15^{\circ}$ . In a recent study, Fu and Ijdo [22] showed structural phase transition of CeAlO<sub>3</sub>. The crystal structure changes from tetragonal to orthorhombic to rhombohedral to cubic phases when heated from 300 to 1423 K. The distortion from cubic to rhombohedral symmetry as well as to tetragonal symmetry is very small. The diffraction lines of the compounds reported here are broad and the lines can be indexed to a pseudo cubic perovskite with  $a \sim 3.772(5)$  Å. Thus, at x = 0.2, pseudo cubic CeAlO<sub>3</sub> phase is formed and the excess alumina present is in the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> phase. Flame temperature in the combustion synthesis is  $\sim 1000$  °C. The product formed is quenched to 500 °C in a few seconds. Therefore, formation of pseudo cubic CeAlO<sub>3</sub> phase is expected.

# 3.2. Thermal stability of $CeAlO_3/\gamma$ - $Al_2O_3$

To study the stability of CeAlO<sub>3</sub> in  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> matrix the sample containing CeAlO<sub>3</sub> (*x*=0.2) was calcined in air at dif-



Fig. 3. Powder XRD pattern of the products formed from decomposition of CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> with temperature: (a) 500 °C, (b) 600 °C, (c) 650 °C and (d) 700 °C. Asterisk (\*) denotes 100% diffraction line of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>.



Fig. 4. Powder X-ray diffraction patterns of CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> under different conditions: (a) as-synthesized, (b) heated in air at 700 °C for 8 h and (c) after reduction in H<sub>2</sub> at 750 °C for 8 h. Asterisk (\*) denotes 100% diffraction line of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>.

ferent temperatures from 300 to 800 °C. At each temperature the dwelling time was 8 h. The XRD pattern of the products formed are shown in Fig. 3(a-d). CeAlO<sub>3</sub> phase formed (for x = 0.2 sample) was stable up to 500 °C and on heating to higher temperature, CeO<sub>2</sub> phase started appearing. Sintering at 600 °C resulted in the oxidation and decomposition of CeAlO<sub>3</sub> giving CeO<sub>2</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. Broad diffraction lines corresponding to CeO<sub>2</sub> along with diffraction lines of CeAlO<sub>3</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> are seen in Fig. 3(b). The Intensities of the diffraction lines due to CeO<sub>2</sub> increased with increase in calcination temperature. Calcination at 700 °C resulted in the decomposition of CeAlO<sub>3</sub> to CeO<sub>2</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. Since intensity of lines due to  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> are low compared to CeO<sub>2</sub> due to large difference in the atomic scattering factors of Al and Ce, only the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (440) line is identified. The diffraction lines corresponding to CeO<sub>2</sub> are broad and the average crystallite sizes calculated from Scherrer method are in the range of 5-7 nm. The product obtained after calcinations at 700  $^{\circ}$ C in air was reduced in H<sub>2</sub> at 750  $^{\circ}$ C for 8 h. CeAlO<sub>3</sub> phase (not shown here) is formed indicating the conversion of CeAlO<sub>3</sub> to CeO<sub>2</sub> is reversible.

Fig. 4 shows XRD patterns of (a) as-synthesized, (b) oxidized and (c) reduced CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. As-synthesized material shows the CeAlO<sub>3</sub> phase formation. Calcination at 700 °C resulted in the oxidation of CeAlO<sub>3</sub> to CeO<sub>2</sub>. Reduction of CeO<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> in H<sub>2</sub> at 750 °C restores the CeAlO<sub>3</sub> phase completely.

## 3.3. TEM studies

To confirm the X-ray data and to study the morphology of the particles, TEM study was undertaken. Fig. 5(a and b) shows TEM bright field images and corresponding electron diffraction patterns of as synthesized CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. The dark regions in the micrograph, shown in Fig. 5(a) correspond to the CeAlO<sub>3</sub> crystallites. Electron diffraction pattern obtained from the CeAlO<sub>3</sub> crystallites (Fig. 5(b)) clearly demonstrates cubic CeAlO<sub>3</sub> phase along with ring patterns of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. CeO<sub>2</sub> phase is not identified either in the ring pattern or in the diffraction spots. Distinct square diffraction patterns observed here are due to the CeAlO<sub>3</sub> phase.



Fig. 5. TEM images of (a) as-synthesized CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, (b) ED pattern of CeAlO<sub>3</sub>, (c) CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (oxidized at 700 °C) and (d) ED pattern of oxidized CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>.

Fig. 5(c and d) shows TEM micrographs and electron diffraction pattern of CeO<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> which was obtained by heating CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> at 700 °C in air. The micrographs show small clusters of CeO<sub>2</sub> particles segregated on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> surface as bi-dimensional ceria patches. Morphology confirms the growth of CeO<sub>2</sub> over CeAlO<sub>3</sub>. The TEM images show small and thin cerium oxide particles, indicating that the small CeO<sub>2</sub> crystallites are formed out of CeAlO<sub>3</sub> phase. Diffraction pattern shows ring patterns corresponding to the d spacing of CeO<sub>2</sub> ( $\sim$ 1.91, 1.63, 1.57 and 1.35 Å) along with less intense diffused rings corresponding to  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> phase. Either rings or clean diffraction spots due to CeAlO<sub>3</sub> is not seen in the oxidized material.

## 3.4. XPS studies

A detailed XPS study of these oxide phases were carried out. We show in Fig. 6, Ce(3d) region of pure CeO<sub>2</sub> (curve (a)), as-prepared CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (curve (b)) and CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> oxidized ex situ in air, curve (c). The same sample was reduced in H<sub>2</sub> and Ce(3d) region of the reduced sample is shown in Fig. 6(d). Ce<sup>4+</sup>(3d) spectrum in CeO<sub>2</sub> is characteristic of strong satellites at 889.1, 898.8 and 908.2, 917.2 eV. All the CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> phases, whether in oxidized or reduced form shows distinct spectral features compared to CeO<sub>2</sub>. Both the shape and intensity of satellites of Ce(3d) spectrum in these samples are indicative of Ce in +3 and +4 state. Therefore, a detailed analysis of Ce(3d) region was carried out for as-prepared CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and for pure CeO<sub>2</sub>. In Fig. 7(a), we show Ce(3d) deconvoluted spectrum of Ce in CeO<sub>2</sub>. The satellites and the main peaks are clearly iden-



Fig. 6. X-ray photoelectron spectra of Ce(3d) core level region in (a) as synthesized CeO<sub>2</sub>, (b) as synthesized CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, (c) oxidized CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and (d) reduced CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. Asterisk (\*) indicates the satellites due to Ce<sup>4+</sup> ion.



Fig. 7. Deconvoluted XP spectrum of Ce(3d) in (a) CeO<sub>2</sub> (deconvoluted peaks (vv', v", v"') for Ce(3d<sub>5/2</sub>) and (uu', u", u"') for Ce(3d<sub>3/2</sub>)) and (b) CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. Full line for CeO<sub>2</sub> and dash–dot for CeAlO<sub>3</sub>.

tified in the CeO<sub>2</sub> spectra and it agrees with those reported in the literature [23,24]. Ce(3d) region of as-prepared CeAlO<sub>3</sub>/γ- $Al_2O_3$  has been fitted to both  $Ce^{3+}$  and  $Ce^{4+}$  and XPS in Fig. 7(b) corresponds to  $Ce_2O_3$  and  $CeO_2$  [11]. In the analysis, the total intensity of the Ce<sup>4+</sup> satellite at  $\sim$ 917 eV was taken as the reference and the rest of the peaks due to Ce<sup>4+</sup> were generated which corresponded to pure CeO<sub>2</sub> spectra as shown in Fig. 7(a). As can be seen from the Fig. 7(b), the difference can be taken care of by fitting the difference spectra to  $Ce^{3+}(3d)$  state [25]. Relative intensities of the main peak and the satellites due to  $Ce^{3+}$ in the spectra agree well with the XPS of  $Ce_2O_3$  [25]. Thus, the Ce(3d) region of CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> contains both Ce<sup>3+</sup> and Ce<sup>4+</sup> features. The relative intensity value of Ce<sup>3+</sup> to Ce<sup>4+</sup> obtained from the integrated area is  $\sim 0.46$ . Ce<sup>3+</sup> states in the XPS of as synthesized catalysts are then due to Ce<sup>3+</sup> in CeAlO<sub>3</sub> since Ce<sub>2</sub>O<sub>3</sub> phase is not detected in the XRD. Therefore, the surface of the CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> contains CeO<sub>2</sub>, this is not detected in XRD studies. A similar analysis of H2 reduced sample gave much less intensity due to  $Ce^{4+}$  as can be seen from Fig. 6(d). Thus, XPS analysis of the as-synthesized CeAlO<sub>3</sub>/y-Al<sub>2</sub>O<sub>3</sub> contains Ce in +3 state corresponding to CeAlO<sub>3</sub> phase and Ce<sup>4+</sup> state corresponding to CeO<sub>2</sub> on the surface.

Binding energy of Al(2p) is observed at 74.1 eV, which corresponds to Al in +3 state as in Al<sub>2</sub>O<sub>3</sub>. O(1s) region was also looked into and the peak was broad centered at  $\sim$ 531 eV. The O(1s) region in pure CeO<sub>2</sub> is narrow and the peak position is at  $\sim$ 530.5 eV. The shift of the binding energy by  $\sim$ 0.5 eV can be attributed to contribution from alumina in the CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> system.

#### 3.5. Surface area analysis

BET surface area of as-synthesized and heat-treated samples has been measured to understand the segregation of the phase as CeO<sub>2</sub> or CeAlO<sub>3</sub>. The surface areas varied from 50 to  $60 \text{ m}^2/\text{g}$ , regardless of whether the phase is CeO<sub>2</sub> or CeAlO<sub>3</sub> and there was no significant change in surface area was observed after repeated reduction and oxidation cycles at 700 °C.

# 3.6. Formation of $CeO_2/CeAlO_3/\gamma$ -Al<sub>2</sub>O<sub>3</sub>

When stoichiometric amount of Ce either in +3 or in +4 state (as precursors) and Al(NO<sub>3</sub>)<sub>3</sub> in 1:1 ratio reacted with required amount fuel, the products formed are CeO<sub>2</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and not CeAlO<sub>3</sub>. However, when a nitrate mixture containing Ce:Al in the atomic ratio of 2:16, CeAlO<sub>3</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> phases are formed. The reaction can be written as follows:

$$2Ce(NO_3)_3 + 16Al(NO_3)_3 + 27C_2H_6N_4O_2$$
  

$$\rightarrow 2CeAlO_3 + 7\gamma - Al_2O_3 + 54CO_2 + 81H_2O + 81N_2 \quad (3)$$

With increase of *x* taken for the preparation of  $In(CeO_2)_x/(\gamma - Al_2O_3)_{1-x}$  CeAlO<sub>3</sub> phase is formed. Maximum amount of CeAlO<sub>3</sub> is found for the Ce:Al ratio of 2:16.

XRD and TEM study indeed confirm the formation of CeAlO<sub>3</sub> phase along with  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. XPS study of the asprepared sample containing maximum amount of CeAlO<sub>3</sub> showed Ce in +3 as well as +4 state. From all the experimental proofs gathered in this study, we attribute Ce<sup>4+</sup> presence to the surface oxidation of CeAlO<sub>3</sub> to CeO<sub>2</sub> phase. This is confirmed by the presence of mostly Ce<sup>3+</sup> state in the hydrogen reduced sample.

## 3.7. CeO<sub>2</sub>/CeAlO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> solid–solid interfaces

 $\gamma$ -Al<sub>2</sub>O<sub>3</sub> crystallizes in defect spinel structure with cubic *a* parameter of 7.911(2) Å. Rietvield analysis has indicated site occupancy of Al ions in  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> crystallizing in *Fd*3*m* space group [17]. Accordingly, instead of 32 oxide ions and 24 cations in the normal spinel unit cell,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> showed 32 oxide ions, 16 Al ions in the octahedral positions and about 5.5 Al ions in the tetrahedral sites indicating Al ion vacancy in the tetrahedral sites [17]. The a/2 of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (3.95 Å) is close to the lattice parameter a (3.772 Å) of CeAlO<sub>3</sub>. Therefore, it is possible to consider the growth of CeAlO<sub>3</sub> over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. This is shown in Fig. 8(a). Lattice mismatch between a/2 of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (1/2a) and a of CeAlO<sub>3</sub> is less than 5%. Indeed, epitaxial growth of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> (a = 3.83 Å, b = 3.89 Å and c = 11.65 (Å) in the *c*-direction is achieved on sapphire with  $1\bar{1}02$  with cubic *a* parameter of 3.64 Å [26]. Lattice mismatch between CeAlO<sub>3</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is even smaller than between sapphire (1  $\overline{1}$  0 2) surface and a or b of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub>. Therefore, growth of cubic CeAlO<sub>3</sub> over cubic  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> as shown in Fig. 8(a) is feasible.

CeAlO<sub>3</sub> crystallizes in pseudo cubic pervoskite structure with lattice parameter a = 3.772(5) Å. This structure can be viewed as layers containing (CeO)–(AlO<sub>2</sub>)–(CeO)–(AlO<sub>2</sub>). Lattice



Fig. 8. Schematic representation of epitaxial growth of (a) CeAlO<sub>3</sub> over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and (b) CeAlO<sub>3</sub> over CeO<sub>2</sub>.

parameter of CeO<sub>2</sub>, a = 5.41 Å and  $\sqrt{2}a_0$ (CeAlO<sub>3</sub>)  $\approx a$ (CeO<sub>2</sub>). Conversely,  $a/\sqrt{2}$  of CeO<sub>2</sub> is close to the lattice parameter of CeAlO<sub>3</sub>. Therefore, it is possible to construct CeAlO<sub>3</sub> over CeO<sub>2</sub> or CeO<sub>2</sub> over CeAlO<sub>3</sub> as given in Fig. 8(b). On heating, CeAlO<sub>3</sub> decomposes into  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub>. On reduction  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> react in this nano volume giving back CeAlO<sub>3</sub>.

The reaction can be written as follows:

$$2\text{CeAlO}_3 + \frac{1}{2}\text{O}_2 \rightarrow 2\text{CeO}_2 + \text{Al}_2\text{O}_3 \tag{4}$$

$$2\text{CeO}_2 + \text{Al}_2\text{O}_3 + \text{H}_2 \rightarrow 2\text{CeAlO}_3 + \text{H}_2\text{O}$$
(5)

Therefore, formation of CeAlO<sub>3</sub> phase on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, formation of CeO<sub>2</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> on heating and CeAlO<sub>3</sub> formation upon reduction in H<sub>2</sub> atmosphere are facilitated by the structural relation between CeO<sub>2</sub>–CeAlO<sub>3</sub>– $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. It is striking to find CeAlO<sub>3</sub> growth over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> for x = 0.2 composition. Almost all the Ce taken is converted to CeAlO<sub>3</sub> phase. For CeAlO<sub>3</sub> growth Ce:Al atomic ratio required is 2:16. Purely by experimental studies, 30 wt.% CeO<sub>2</sub> in  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is arrived for a best CeO<sub>2</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst followed by noble metal impregnation [27]. 30 wt.% CeO<sub>2</sub> in  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> corresponds to 20 mol% CeO<sub>2</sub> and 80 mol%  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> that is, (Al<sub>2</sub>O<sub>3</sub>)<sub>0.80</sub>(CeO<sub>2</sub>)<sub>0.20</sub>. This composition indeed gave CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> phase in our studies (Eq. (3)). We belive that CeAlO<sub>3</sub> growth on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is a constrained growth due to lattice matching and such a good growth takes place for 2:16 composition.

# 4. Conclusions

The multicomponent system CeO<sub>2</sub>/CeAlO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> is a presently employed catalyst support for three-way auto exhaust catalysis which is synthesized by a single step solution combustion synthesis. For the composition Ce:Al in 2:16, which corresponds to 20 mol% CeO<sub>2</sub> in  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, the phase observed is CeAlO<sub>3</sub> over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. More than 20 mol% CeO<sub>2</sub> composition resulted in segregation of CeO<sub>2</sub> phase. CeAlO<sub>3</sub> transforms to CeO<sub>2</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> on heating in air above 700 °C which converts back to CeAlO<sub>3</sub> on H<sub>2</sub> reduction. Reversible formation of CeAlO<sub>3</sub>  $\Leftrightarrow$  CeO<sub>2</sub> +  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> on oxidation–reduction retains the effective surface area. XPS studies showed the presence of  $Ce^{4+}$  in CeAlO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, formed due to the surface oxidation of CeAlO<sub>3</sub>. The CeO<sub>2</sub> crystallites formed over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> are of the size 20–30 nm, whereas CeAlO<sub>3</sub> crystallites dispersed in  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> are of 80–100 nm. Adhesion of CeO<sub>2</sub> to  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is due to epitaxial growth of CeAlO<sub>3</sub> over  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> over CeAlO<sub>3</sub>.

#### Acknowledgements

Financial support from the Department of Science and Technology (DST), Government of India, is gratefully acknowledged. Authors thank Late Dr. G.N. Subanna, for microscopic investigations of the samples.

#### References

- [1] J.C. Summers, S.A. Ausen, J. Catal. 58 (1979) 131.
- [2] H.C. Yao, Y.F. Yu-Yao, J. Catal. 86 (1984) 254.
- [3] E.C. Su, C.N. Montreuil, W.G. Rothchild, Appl. Catal. 17 (1985) 75.
- [4] M. Ozawa, M. Kimura, J. Mater. Sci. Lett. 9 (1990) 291.
- [5] N. Kakuta, N. Morishima, M. Kotobuki, T. Iwase, T. Mizushima, Y. Sato, S. Matsuura, Appl. Surf. Sci. 121/122 (1997) 408.
- [6] B. Engler, E. Koberstein, P. Schubert, Appl. Catal. 48 (1989) 71.
- [7] T. Shido, Y. Iwasawa, J. Catal. 136 (1992) 493.
- [8] A. Martinez-Arias, J. Soria, J.C. Conesa, X.L. Seoane, A. Arcoya, R. Cataluna, J. Chem. Soc. Faraday Trans. 91 (1995) 1679.
- [9] N. Kaufherr, L. Mendelovici, J. Less-Common Met. 107 (1985) 281.
- [10] M. Haneda, T. Mizushima, N. Kakuta, A. Ueno, Y. Sato, S. Matsuura, K. Kasahara, M. Sato, Bull. Chem. Soc. Jpn. 66 (1993) 1279.
- [11] J.Z. Shyu, W.H. Webber, H.S. Gandhi, J. Phys. Chem. 92 (1988) 4964.
- [12] F.L. Normand, L. Hilaire, K. Kili, G. Krill, G. Maire, J. Phys. Chem. 92 (1988) 2561.
- [13] S. Geller, P.M. Raccah, Phys. Rev. B. 2 (1970) 1167.
- [14] P.J. Schmitz, R.K. Usmen, C.R. Peters, G.W. Graham, R.W. McCabe, Appl. Surf. Sci. 72 (1993) 181.
- [15] K.C. Patil, Bull. Mater. Sci. 16 (1993) 533.
- [16] K.C. Patil, S.T. Aruna, S. Ekambaram, Curr. Opin. Solid State Mater. Sci. 2 (1997) 158.
- [17] R.S. Zhou, R.L. Snyder, Acta Cryst. B. 47 (1991) 617.
- [18] P. Bera, K.C. Patil, M.S. Hegde, Phys. Chem. Chem. Phys. 2 (2000) 373.
- [19] M. Mizuno, R. Berjoan, J.P. Coutures, M. Ferox, Y.K. Shi, J. Ceram. Assoc. Jpn. 83 (1975) 50.
- [20] T. Shishido, M. Tanaka, H. Horiuchi, H. Iwasaki, N. Toyota, D. Shindo, T. Fukuda, J. Alloys Compd. 192 (1993) 84.
- [21] Y.S. Kim, Acta Cryst. B. 24 (1968) 295.
- [22] W.T. Fu, D.J.W. Ijdo, J. Solid State Chem. 179 (2006) 2732.
- [23] P. Burroughs, A. Hammett, A.F. Orchard, G. Thorntom, J. Chem. Soc. Dalton Trans. 17 (1976) 1686.
- [24] A. Fujimori, Phys. Rev. B 27 (1983) 3992.
- [25] A. Fujimori, J. Magn. Magn. Mater. 47-48 (1985) 243.
- [26] D. Kumar, K.M. Satyalakshmi, S.S. Monohar, M.S. Hegde, Bull. Mater. Sci. 117 (1994) 625.
- [27] E.S. Lox, B.H. Engles, E. Koberstein, Technical Paper Series 910841, Society of Automotive Engineers, Warrendale, 1991.