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1. Introduction 

In two earlier papers by the author [1,2]. analytic continuation 
was used to connect the ac response of arbitrary electrode geome­
tries to the corresponding secondary current distributions. Several 
Hull cell geometries, the rectangular pore, the saw-tooth and a 
fractal geometry were studied and the method was shown to pro­
vide a bench-mark for evaluating the reliability of approXimate 
theories such as the Transmission Line Model [3-51. In this paper 
we take up the problem of depressed arcs often observed in the 
Nyquist plane for rough electrodes where a Faradaic reaction takes 
place in addition to capacitive charging. [In this paper, the term 
"rough" will apply to any electrode whose purely capacitive behav­
ior follows a CPE power law.1 A major inconsistency is pointed out 
in a model used to explain these depressed arcs and a new model is 
proposed which removes this inconsistency. Section 2 summarizes 
the prior developments and in Section 3 we formulate the method 
of analytic continuation in a convenient dimensionless form by 
introducing a length scale III the problem and further show how 
any candidate model should satisfy a consistency condition in view 
of the fundamental equations which govern the ac response. We 
advance, in Section 4. a model which satisfies this consistency con­
dition and is also able to reproduce the depressed Nyquist arcs. 
Section 5 reports a set of exact analytic results which may be used 
as diagnostic criteria for this new model and tabulate it along with 
the criteria for the old models facilitating the comparison of mod­
1~ls among themselves and with the experimental data. Discussion, 
:;ummalY and Conclusions are placed in the last section. 
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2. Prior developments 

For perfectly polarisable solid electrodes (i.e. with purely capac­
itive charging). the impedance response is often represented by the 
so-called constant phase element (CPE): 

Z __A_ (1 )- Uw)' . 

Different researchers have tried to explain the CPE differently. 
invoking for example a distribution of relaxation time constants, 
rough/fractal electrode geometries, pore structures and non­
uniform current-potential distributions. Though the theory of CPE 
is not yet a completely settled issue. experiments have established, 
beyond reasonable doubt, Eq. (1) for a large number of experimen­
tal systems. 

Eq. (1) does not include Faradaic reactions. Once we bring in a 
redox activity at the interface. the inclined CPE-line in the Nyquist 
plane changes into a depressed ar . Some workers [6,7J have tried 
to explain these arcs by incorporating an over-all resistance R in 
parallel with the CPE in Eq. (1) and curve-fit these arcs with an 
equation of the form: 

Z _ 1 (2)
- 1 (jw)"" 

R+---P:­
Others have used a different form: 

Z_~(_l)' (3
- B k+ JWC . 

It is important to note the differences in the functional forms in Eqs. 
(2) and (3): Both the Faradaic and non-Faradaic parts are subjected 
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Nomenclature 

Z, Y impedance and admittance 1'0 amplitude of the ac signal 
lO frequency ( length scale 
::t, ::tA, C(B CPE exponents Wo" complex Wagner number 
R, Rc, charge-transfer resistances " conductivity of the electrolyte 
C, CdI.A, Cdl.O double-layer capacities A, AA' As effective areas of different regions 
1, dimensional or non-dimensional potential 

to the dispersion in Eq. (3), while only the non-Faradaic part is sub­
Jected to dispersion in Eq. (2). Further. only Eq. (2) leads to de­
pressed semi-circles and Eq. (3) produces only the Cole-Davidson­
type Nyquist response resembling one-fourth of a lemniscate. In 
an attempt to generalize the CPE to include charge-transfer, diffu­
sion and chemical reactions. de Levie [8] started off from Eq. (3). 
In a study of hydrogen evolution on lanthanum-phosphate-bonded 
Ni electrode, Los and co-workers 191 have studied Eq. (2) in addition 
to Eq. (3) and a 2-CPE model: though its physical basis is not clear, 
their conclusion is in favor of this 2-CPE model whose experimental 
fit is slightly better than that of Eq. (3). Hasbach and co-workers 
[10j used Eq. (3) in combination with the transmission line model 
to describe the impedance of porous Zn electrodes in weakly alka­
line electrolyte. 

The models proposed so far to explain the depressed arcs suffer 
from one or more of the following deficiencies: 

(i) A clear physical basis	 is not provided by the originators of 
the model. 

(ii) The model does not satisfy the consistency condition dis­
cussed later on in thi paper. 

(iii) The model fails to produce the depressed arcs. 

For example, the model represented by Eq. (2) suffers from the 
deficiency (ii) and that involving Eq. (3) has the deficiency (iii). 
Other models reported in the literature have one or more of these 
deficiencies. 

3. Non-dimensional form of the equations governing the ac 
response and the consistency condition 

In this section, we write the equations which govern the ac re­
sponse in a convenient non-dimensional form for use in subse­
quent sections and also deduce the consistency condition 
referred to in the earlier section. 

Following [1,2 Lwe write the governing equations as 

\72(/r'" 0 (4) 

with the boundary condition 

-"V,,(!> = (R:, -j(')Cdl)(tfJo - q»). (5) 

at the working electrode. The boundary conditions at the counter 
electrode and at the walls of the cell, which may be taken to have 
their usual forms, are not important for the present work. The nota­
tions, though obvious, are collected together at the end of the 
al"ticle. 

We pass to the dimensionless form by dividing the potential q) 

by the amplitude of the ac signal (/'0 and the spatial co-ordinates 
(x, y, z) by a length scale I. However, for notational convenience, 
we retain the symbol If> for the dimensionless potential and the 
\7 operator now uses the dimensionless co-ordinates (xiI', yle, zle). 
The dimensionless system is: 

(6) 

with 

-\7"tfJ = (_t_' +jCJ)Cdll)(1 _ ¢). (7)
KRC[ f( 

satisfying at the electrode boundary B. 
There is essentially only one model parameter in this system, 

viz. 

_I_+jr'JCdl(). (8)
( 1,'R ,,­a 

which may be termed the complex Wagner number, Woo. Hence, 
the dimensionless potential depends only on this complex parame­
ter besides the geometrical details of the electrode surface. Now, 
the expression for admittance is: 

y=----':. \7,,(pdB.	 (9)
( . B"l

where (I) and \7 are dimensionless and the integral, over the elec­
trode boundary B, has the dimensions of area. 

Eq. (9) may be written as 

Y= ~f(Wo')	 (10)
t 

When RC{ = x, for a purely capacitive electrode, 

(11 ) 

Comparing this with the experimentally observed CPE response (for 
perfectly polarisable electrodes) 

Y=(jw)'/A.	 (12) 

We deduce that 

f(jOJCdlf/lc) = UOJCdll/,,)'A.	 (13) 

where A is a non-trivial area-factor. When C( = 1, we of course obtain 
the admittance of the flat electrode 

(14) 

where A is now the area of the flat electrode. 
Note that, as we are considering only the working electrode 

impedance, the solution resistance and any counter electrode 
impedance do not come into the picture. though these may be eas­
ily included as was shown in my earlier paper [11. 

Now we switch on a charge transfer reaction with a finite R" on 
the same working electrode, Analytic continuation leads to the fol­
lowing expression for the admittance: 

y = ~ (_1'_ + j(J)Cdl {) 'A. (15) 
i' "Ret " 

The Nyquist plot corresponding to this admittance is shown in 
Fig. 1. This is a Cole-Davidson-type impedance and not a depressed 
semi-circle! 

Our conclusion is: The CPE power law in the purely capacitive 
region is not a sufficient condition for the system to exhibit a 
depressed semi-circle when a charge transfer reaction is included. 
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.:'	 4. A consistent model for the Nyquist arcs 
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Fig. I. A plot of Eq. (15) illustrating the Cole-Davidson-type behavior. 
R" - 2500 Ohm em'. " ~ 0.1 S cn,-'. Cd' =20 111' cm-2• and rt. = 0.5. 

Once we view the ac response as the analytic continuation of 
the dc response. we have a simple and powerful method of going 
back and forth not only between the ac and dc problems but also 
between the purely capacitive problem and the problem which in­
cludes charge transfer. This perspective further provides a consis­
tency condition which any impedance model should satisfy. For 
example. Eqs. (4) and (5) dictate that the charge-transfer resistance 
Ret and the double-layer capacitance Cdl can appear, in any imped­
ance expression, only in the strict combination: 

1 
(16)(Ret -+- jWCdl ) 

and not separately. In other words, the impedance can only be a 
function of 

U+ jroCdl ) 

and not of Rrl and Cdl separately. 
Before we close this section. a remark is in order. Though elec­

trochemical impedance spectroscopy (EIS) and the concept of 
equivalent circuits in Electrochemistry were originally inspired 
by circuits in Electrical Engineering, an important difference be­
tween the two disciplines must be kept in mind by the practitio­
ners of EIS. While ele trical engineers have the freedom to 
assemble and connect the circuit elemerlts in any way they want, 
electrochemists are constrained by the fundamental governing 
equations such as (4) and (5). Given the vast collection of circuits 
whi h are being employed by el ctrochemists to-day to curve-fit 
experimental data in EIS. uch constraints and self-consistency 
conditions 'houJd be welcome for they will help to regulate and 
check the proposed impedance models. 

o~o~l~ 06- 0 

111 0.4 ., 0 

NO.2 0° 

o --O~5--~---1~5---2~--2~5---3~---'-

Zre~1 

Though Eq. (15) is fundamentally sound, it fails to produce th 
depressed arcs. In sharp contrast, Eq. (2) produces these arcs: how­
ever it does not satisfy the condition enunciated in Section 3.ln the 
present section. we advance a model which has a clear physical ba­
sis. satisfies the consistency condition and produces the depressed 
arcs. 

We consider a model for an electrode surface which is electro­
chemically heterogeneous in the sen that there are two type of 
regions A and B. with only non-Faradaic processes taking place on 
A and both Faradaic and non-Faradaic proce ses on B. Both the re­
gions are in general "rough" in the sense in which it was defined in 
the beginning of this article. The A-type regions may be realized in 
actual systems in several ways: depending on the natur of the 
reacting species and the electrolyte, the A-type region may consist 
of oxide-covered patches on metal electrodes. specifically adsorbed 
molecules and ions (e.g. surfactants), surface defect regions ener­
getically unfavorable to charge-transfer or any other agent which 
poison and deactivate parts of the electrode against charge-trans­
fer (inhibitors in corrosion and painted surfaces with holidays. 
for example). For this model. the impedance is given by 

Z=_l_ (17) YA ..,.. YB ' 

where 

(18) 

and 

K.· (e jWCdIBt') "AYB =- --+--- B·	 (19)e I-CR et /( 

The exponents IY.A and c(s can in general be different for A and B type 
regions and so also their specific capacities Cdl.!\ and CdIB. AA and As 
are the corresponding effective areas mentioned earlier. While YB 
alone can produce only the Cole-Davidson-type lemniscates in the 
Nyquist impedance plane, addition of YA changes it into depressed 
arcs which are typical of experimental data. Figs. 2 and 3 how 
these Nyquist arcs for several settings of C(A. IY.B. AA and AB• Though 
the model represented by Eq. (2) (we henceforth call it model I) 
and that represented by Eqs. (17)-( 19)(modelll) lead to imilar Ny­
quist arcs, two serious differences between the two must be noted: 
(i) model I is inconsistent with the fundamental equations. while 
model II is consistent: (ii) the low and high frequency NyqUist 

b 

Zrp.,1 

Fig. 2. Plots illustrating the depressed arcS predicted by Eqs. (17)-( 19) for model II. (a) 'Y.A = 0.5. '''B = 0.5. (b) "'A = 0.5. "'B = 0.6. (c) "'A = 0.6. '''B =0.5. and (d):;(A =06. "'B = 0.7. 
Cdl.A - Cdl .Il = 20 JlF em ~. fA =0.5 and fB =0.5. fA and fB are the effective area fractions of the A- and B-type regIOns. The values of all other parameters are as in Fig. 1. 
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Fig. 3. (a) CIA· 0.6, "II ~ 0.7./A~ 0, 1 andfo = 0.9. (b) JA =O.G, X" =0.7.};, =0.9 andfll = 0.1. (c) CI. = 0,5. "II =0.5.[, = 0.99 and f. = 0.01. (d) Ji' = 05.~1I = O.S.!. =0.01 'lndf, = 099. 
Other parameters are as in Figs. 1 anel 2. 

slopes are equal in magnitude( though of course opposite in sign) for 
model I, while these slopes may in general be different in magni­
tude for model II depending on the values of '1.A and '1.8' More about 
this in the next section. Eq. (15) will be referred to as model Ill. 

We believe that the model represented by Eqs. (17)-( 19) is the 
simplest model which has a clear physical basis. satisfies the con­
sistency condition and produce depressed arcs. There is also a bo­
nus: By varying the model parameters such as (J,A, (J,B. AA and AB' 

several different Nyquist responses can be realized as special cases: 
the pure CPE, the lemniscate (or the Cole-Davidson-type) response, 
the classical semi-circle and the depressed arcs. In this last respect, 
this model can also serve as a good candidate for curve-fitting 
experimental impedance data. 

5. Diagnostics 

We present in this section a set of exact analytic results which 
can be applied to experimental ac impedance data to validate the 
different models. Though very often curve-fitting is used to fit 
experimental impedance data to chosen models, a successful 
curve-fit cannot be taken to validate a model especially when the 
model does not have a clear physical basis and mathematical con­
sistency. Hence diagnostic tests are paramount. Before we discuss 
these diagnostics, let us note that model 1will be a special case of 
model II, if we can set (J,B =0 in model II. However, unfortunately 
for model I, it is well established experimentally that the exponent 
(J, ranges only between 0.5 and 1. This is indeed a fortunate situa­
tion for our theory enunciated here which rules out model I. 

Now we turn to the diagnostics. We have exact analytic results 
for the three diagnostic properties of the Nyquist response: the low 
frequency intercept on the real axis, the low and the high fre­
quency slopes. As we mentioned earlier, we have not included 
the solution resistance in the present treatment and hence the high 
frequency intercept on the real axis is zero for all the models. These 
analytic results are listed in Table 1 for the new model along with 
the corresponding results for the older models, including the Ran­
dles circuit, to facilitate a comparison. Except for model II, we have 
further exact results for the real and imaginary components of the 
impedance and the frequency corresponding to the maximum 
point in the Nyquist plot (ZRc.m,,,, Zlm.max, w max ). The methods by 
which these analytic results were obtained are sketched in the 
Appendices. We summarize below the three models (I-III) along 

Table 1 
Diagno~ric criteria for some marte-Is 

Model no. Intcrcept on the Low frequency High frequency 
rcal axis slope slope 

I - tan(cm/2) tan('ln/2) 
II -tan(ClAn/2) tan(%Anj2) for IY.A > ;10 

tan(aon/2) for "II> CIA 
III tan(anI2) 
Classical cc 

with the exact results for the Nyquist maxima (2 Re.mox. 

llm,max. (J)max)· 

5.1. Modell 

(20) 

where 

(21 ) 

For this model, 

R 
ZRemax = 2' (22) 

Z = _ Rsin(Cl.1l:j2) 
(23)

Im.max 2(1 T cos(cmj2)) . 

_ (RKA) 
W ola' - t 

5.2. Model /I 

Z=_l_ 
YA + YB • 

where 

(II') (Cdl t)-1
f(' 

(24) 

(17) 

(18) 
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and	 where 

log of frequency 

Y =~ (_(__ jWCdIB()Y'A .
B B (19) 

(I\Rn "" 

For this model, the author has not been able to obtain analytic re­
sults for the Nyquist maximum. However, the other three proper­
ties listed in Table 1 will be useful as discussed in the concluding 
section. 

5.3. Model III 

(25) 

where 

(26) 

For this model, 

(27) 

(28) 

(29) 

a 

.5 

05. 

o 
o 

109 of frequency 

c

1 ~I 
113, 

1.2 . 

CII3 

0.4 

0.2 

-10 -8 -6 -4 -2 0	 2 4 13 810 
log of frequency 

Fig. 4. Bode phase plor, for model I!. (a) "A =0.7, aa =O.5.[A =0.99 and fa =0.01. (b) 'l.A 

_ K( )Xt 
A=- -- A	 (30)

f h'Rn 

6. Discussions, summary and conclusions 

Model r is often used to fit depressed arcs in the Nyquist plots 
which are not semi-circular. We have sh wn in this paper that 
this model is fundamentally nawed. A model was advanced for 
these depressed arcs and there is a clear case that one takes a 
fresh look at systems exhibiting these arcs using the diagnostic 
tests developed here. Table 1, for example, can be used to distin­
guish between model I and model II. While the high and low fre­
quency slopes are equal for model I, the high frequency slope for 
model II is equal to or greater than the low frequency slope. Fur­
ther. the intercept on the real axis is dependent on the electrolyte 
conductivity,,· for model II; in fact, the logarithm of this intercept 
plotted versus log 1\ should be a straight line with slope ('Xr, - 1). 
On the other hand, this intercept is given by the empirical resis­
tance R in model I; as model I does not have a physical/mathe­
matical basis, R can at best be taken as a fitting parameter. 
Model 11\ is very distinct from both model 1 and model II; its 
low frequency Nyquist slope is infinity and the high frequency 
slope is tan('Xrr/2). The IJ1tercept on the real axis, for model III, 

b 

o 
o 

aona:;;uauaAaAJ 

,~/ 
o
o 

o-5	 10 

0.2 

- 10 -8 -6 -4 -2 0 2 4 6 8 10
 
log of trequency
 

=0.5. ". =0.9.[A =0.9 and f. =0.1. ( ) C<" =0.6, ~a =X.[A =1 and fa = O. (d) ~A = X. '. = 0.7. 
fA =0 and f8· 1. Ocher paramerers are as in Figs. 1 and 2. x is any value berween 0.5 and 1. 
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depends on the electrolyte conductivity IC in a way similar to that 
for model II. 

Instead of Nyquist plots, we can also use Bode phase plots to 
represent our new model. In Fig. 4, we have plotted the ratio 

l'm 
- lRe 

against the logarithm offrequency. This ratIO, as shown in Appendix 
A, approaches zero for small frequency, while its high frequency 
limit is 

tan(cr:... rr/2) for rJ.A > rJ.s 

and 

tan( srr./2) for rJ.B > aA. 

For example, in Fig. 4a, a single wave is observed showing clearly 
the high frequency limit as 1.962 corresponding to rJ.A; 0.7. In Fig. 
4b, two waves are seen, the first one corresponding to aA; 0.5 
and the second one corresponding to IXB ; 0.9. Fig. 4c is for the case 
where only the A-type region is present on the electrode surface, i.e. 
a pure ePE. Fig. 4d is for the case where only the B-type region is 
present showing the high frequency limit as 1.962 corresponding 
to aD; 0.7. Hence it appears that the Bode phase plots will be useful, 
in favorable parametric regimes, to identify the presence of the A 
and B type regions on the electrode. 

Eqs. (22)-(24) and Eqs. (27)-(29) provide more diagnostic 
checks for model I and III respectively. For example, for model I, 
(-Zlmrn"x/ZR~.m"x) should be equal to sin (arr/2)/(1 + cos(arr/2)) 
and log OJ max plotted versus log IC should be a straight line with 
slope (a - 1 )/IY.. For model III, (-llm.max /lRe.max) should be equal 

to tan (2/i~2)) and OJrnax is independent of IC and is inversely pro­

portional to RcrCdl. 

The d pressed arc are often reported in corrosion studies. For 
example, Polo et al. encountered it during the inhibition of corro­
sion on mild steel by tributylamine [11 j,Walter et al. invoked it 
for the impedan analysis of painted metals [6J and Marikkannu 
et al. found it for metals at various stages of phosphate coating 
[12). In all such instances, the electrode surface consists of two re­
gions, one permitting Faradaic reactions and the other prohibiting 
it. However the experimental data were not analyzed that way by 
these authors who used only model 1. Hence we reiterate that 
numerical fit alone does not validate a model and that there is a 
clear case for reexamining the experimental data on depressed arcs 
using the diagnostics made available in the present work. It should 
also be worthwhile to carry out carefully designed experiments 
along the following lines: start with an electrode which exhibits 
a well defined purely capacitive CPE and introduce a suitable redox 
reaction after blocking parts of the electrode surface against Fara­
daic processes, Test the resulting Nyquist response usi ng the diag­
nostics for model II. Further, if the electrode is not partly blocked, 
the diagnostic criteria for model 111 should apply. 

Three closing remarks are in order: (i) all the analytic results 
presented in this paper for the Nyquist maxima and the Nyquist 
slopes for OJ; 0 and OJ; oc were confirmed by independent com­
puter simulations of the ac response. (ii) These simulations further 
revealed that these limiting Nyquist slopes should be computed by 
carefully extrapolating the slope values from the finite frequency 
range used in the simulation. This remark applies to the analysis 
of experimental data as well. The limiting slopes obtained may 
be in error otherwise and (iii) We introduced a length scale ein this 
paper. Clearly, any impedance or admittance should be indepen­
dent of this e. This is indeed so because the non-trivial area factors 
such as AA also depend on e and the combinations like AA 0 ('''-I 
which alone enters the theory should be invariant. 
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Appendix A 

In this appendix, we sketch the method of obtaining the slopes 
of the Nyquist curve at the limits w ..... 0 and (JJ -> . The Nyquist 
slope at any point is given by: 

(An 

where the primes denote differentiation with respect to the fre­
quency OJ or a quantity which depends on w. As we started, in this 
paper, with expressions for the complex admittance Y, we fir t 
make the following connections. 

1 
(A2)l=y' 

YR. 
lRe = 2 2' (A3) 

(YRe + Ylm) 
Ylm 

lIm = - 2 2' (M) 
(Y Re + Ylm) 

We then differentiate lRe and lim with respect to the frequency (in 
practice, it is found convenient to define (); tan-J(wCclIRct) and dif­
ferentiate with respect to () instead). 

After some algebra. we obtain 

l;m Q+r=frm (AS)r=l ......lL' 
Re - P-(1/P) 

where 

(A6) 

and 

Q= Y;m (A7)
Y~e 

Thus. the Nyquist slope has been related to the slope of the 
corresponding admittance curve and (Ylm/YRe ). Note that thIS result 
is general and indep<:ndent of any model. pplying it to our model II, 

we obtain 
w ..... 0 case: 

P-.O 

and 

Using this in Eq. (AS), 

OJ ..... , case: 

case (i) aA > Us 

P -. tan(rJ.A rr./2), 

Q -. tan(aArr./2). 

Using this in Eq. (AS). 
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in the expressions for l;m /2- --. - tan{"!. IT )
l~e . 

lRe and lim 

case (ii) as > (J.A we obtain 

P ---; tan(cxaIT/2). R 
lRe.mJx == :2 (B8)

Q ---; tan(CXB l1/2) 
Rsin(Cll1/2)

and (B9)
-lim ",," == 2(1 +cos(cm/2)) 

~m /2Z' ..... -tan(Clsl1 ). 
R" B.2. Model If{ 

Eq, (26) may be conveniently rewritten as 

Appendix B y = }exp(jexO) (B10)
. (cos 0)' 

In this appendix we derive results for the maximum point of the
 
where
Nyquist curve. 

0= tan-I (Wedl Rct ) (B11) 
B.l. Model I 

and 
l=_1_ (B1 )k+ Y T« f )' (B12)i. = ( "R A. 

ct 

where 
From this it is quite straightforward to find the impedance Z and its 
real and imaginary parts ZRe and lim' Take now the ratio of the Y = ~ (jfVCdlf) 'A. (B2)

/ II: derivatives with respect to II and simplify to obtain 

= ;.{w)Y (B3) 
(B13)

tan({l + "!.)O) .with 

Equating this to zero, we locate the maximum as 
'( ) _ ./.w----1\ (I'JCdll) 'A

I ". (1 + ·'X)lJrnax == rr/2 (BI4) 

l= 1 . (B4) and
k4- i.{(I») cos(':<11/2) + ji.{rv) sin{cm/2)
 

(B15)We now differentiate with respect to i. instead of (i) and take the ra­ Wm,: = Cd~Rct tan (2( 1: aJ . 
tio of the I-derivatives: 

Substituting the value of II 111 ax in lRc and lim, l Re.m," and llm.m"x 

l;m sin{Cll1f2) (i& - ;2) follows. 
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