Electrochemistry Communications 10 (2008) 891-894

Contents lists available at ScienceDirect

Electrochemistry Communications

journal homepage: www.elsevier.com/locate/elecom

Structural and electrochemical investigation of Li₂MgSnO₄ anode for lithium batteries

N. Jayaprakash, N. Kalaiselvi*

Central Electrochemical Research Institute, ECPS Division, Karaikudi, Sivaganga, Tamil Nadu 630 006, India

ARTICLE INFO

Article history: Received 13 March 2008 Received in revised form 3 April 2008 Accepted 7 April 2008 Available online 12 April 2008

Keywords: Li₂MgSnO₄ anode MAS ⁷Li NMR Hexagonal Urea assisted combustion method Lithium-ion battery

ABSTRACT

Hexagonal Li₂MgSnO₄ compound was synthesized at 800 °C using Urea Assisted Combustion (UAC) method and the same has been exploited as an anode material for lithium battery applications. Structural investigations through X-ray diffraction, Fourier Transform Infra Red spectroscopy and ⁷Li NMR (Nuclear Magnetic Resonance spectroscopy) studies demonstrated the existence of hexagonal crystallite structure with *a* = 6.10 and *c* = 9.75. An average crystallite size of ~400 nm has been calculated from PXRD pattern, which was further evidenced by SEM images. An initial discharge capacity of ~794 mA h/g has been delivered by Li₂MgSnO₄ anode with an excellent capacity retention (85%) and an enhanced coulombic efficiency (97–99%). Further, the Li₂MgSnO₄ anode material has exhibited a steady state reversible capacity of ~590 mA h/g even after 30 cycles, thus qualifying the same for use in futuristic lithium battery applications.

© 2008 Published by Elsevier B.V.

1. Introduction

Lithium batteries based on transition metal oxide cathodes and carbon or graphite anodes have been the choice of interest, since the commercialization of the battery technology by early 1990s [1]. However, an ever pressed demand for the electrode materials with higher reversible capacity than carbon based anode materials has stimulated researchers to explore a wide variety of alternative anode candidates for lithium-ion batteries [2]. In this regard, metals and alloys present themselves as attractive alternatives to carbon/graphite based anode materials due to their higher capacity, excellent rate capability, etc. [3]. However, the unavoidable larger volume changes of intermetallics lead to mechanical failure of the electrode, resulting in the poor cycleability of the bulk metal alloy [4].

Similarly, development of tin oxide containing glass anodes and the mechanistic investigation of tin based electroactive materials are reported to exhibit improved cycleability with a specific capacity of ~1800 mA h/cm³, provided the metal phase is prepared as ultra fine particulates [5]. On the other hand, the major limiting factor is the larger initial irreversible capacity loss that results from the irreversible consumption of lithium prior to lithium alloying. Therefore, in an attempt to alleviate the inherent adverse effects of both the carbon based anodes and the Sn based alloys, an alternative category Li_xMSnO_4 candidate was chosen for the present

1388-2481/\$ - see front matter \odot 2008 Published by Elsevier B.V. doi:10.1016/j.elecom.2008.04.012

study. Herein, Li_xMSnO₄ type of compounds with a suitable metal viz. Mg is expected to impart structural and thermal stability by way of pillaring effect [6]. Because, Mg which is known to enhance the cycleability and stability of native ABO₄ material is expected to combat the unacceptable volume changes and the consequent capacity fade problems of tin in the chosen category Li₂MgSnO₄ compound. In addition, the basic requirement of excess of Li related to the unacceptable irreversible capacity loss behavior is also believed to get addressed in the Li₂MgSnO₄ compound [7] chosen for the study. Based on these grounds, the present study was planned on the synthesis and electrochemical investigation of Li₂MgSnO₄ anode for possible lithium intercalation activity upon electrochemical cycling.

In short, the study has a main focus on the possibility of realizing modified structural and electrochemical properties of Li_2MgS nO_4 anode, especially upon extended cycling. Towards this direction, UAC method has been chosen to synthesize the title compound, based on the encouraging results of our previous studies [8].

2. Experimental

2.1. Synthesis procedure

The Li₂MgSnO₄ active material was synthesized by adopting Urea Assisted Combustion (UAC) method and the details pertinent to the same are described elsewhere [8]. In this regard, the actual reaction taking place in the UAC method of synthesizing Li₂MgS- nO_4 is represented in Fig. 1.

^{*} Corresponding author. Tel.: +91 4565 227550 559; fax: +91 4565 227779. *E-mail address:* kalakanth2@yahoo.com (N. Kalaiselvi).

Author's personal copy

N. Jayaprakash, N. Kalaiselvi/Electrochemistry Communications 10 (2008) 891-894

 $LiNO_3 + Mg(NO_3)_2 + Sn(NO_3)_2 + OH_2 \longrightarrow LiOH + MgOH^+ + SnOH^+ + HNO_3$

Fig. 1. Chemical reaction involved in the synthesis of Li₂MgSnO₄ by UAC method.

2.2. Physical and electrochemical characterization

Phase characterization was done from the powder X-ray diffraction (XRD) patterns recorded on a Philips 1830 X-ray diffractometer using Ni filtered CuK α radiation (λ = 1.5406 Å). Surface morphology of the synthesized LiMnSnO₄ was investigated using Jeol S-3000 H Scanning Electron Microscope. Fourier Transform Infra Red spectroscopy (FT-IR) study was performed on a Perkin–Elmer paragon-500 FT-IR spectrophotometer using a pellet containing the mixture of KBr and the active material in the region of 400–2000 cm⁻¹. ⁷Li NMR measurements were carried out with a Bruker MSL-400 spectrometer by employing a 5 mm Bruker VT-MAS probe operating at a ⁷Li frequency of 14 MHz. Electrochemical charge–discharge study was carried out using MACCOR charge– discharge cycle life tester.

2.3. Electrode preparation and cell assembly

Details pertaining to the anode electrode preparation and the subsequent coin cell fabrication are reported already [9].

3. Results and discussion

3.1. Structural and surface morphology results

The X-ray diffraction pattern of Li₂MgSnO₄ compound prepared by Urea Assisted Combustion (UAC) method is shown in Fig. 2a. Existence of broad and well defined Bragg peaks demonstrates the formation of size controlled and highly crystallized Li₂MgSnO₄ grains. The miller indices (*hkl*) of all the peaks were indexed as per the JCPDS file No. 220414 that corroborates the existence of hexagonal lattice structure. The lattice parameter values calculated by least square fitting are *a* = 6.10 and *c* = 9.75. Using Scherer's formula, an average grain size of ~400 nm has been calculated, which is believed to be due to the exploitation of UAC method to produce ultra fine powders of Li₂MgSnO₄.

The powder morphology of Li₂MgSnO₄ material investigated using Scanning Electron Microscopy (Fig. 2b) evidences the presence of evenly distributed spherical grains with finer particle size. In general, synthesis of compounds with size reduced particles

Fig. 2. (a) X-ray diffraction pattern and (b) Scanning Electron Micrograph of $LiMg_2SnO_4$.

articles or nano structured materials is possible only at temperatures below 500 °C, regardless of the process of post grinding or the period of grinding. On the other hand, similar to our earlier report [8], an average particle size distribution of about 300–400 nm is demonstrated in the present study also (Fig. 2b), which is evidenced by the XRD results as well. The presence of such kind of sub-micron sized particles exhibits the impact of UAC method in producing Li₂MgSnO₄ sample with preferred physical characteristics, thus indicating the possibility of realizing better electrochemical properties.

3.2. FT-IR and MAS ⁷Li NMR studies

IR spectroscopy is an effective tool to detect the local cation environment of a lattice containing closely packed oxygen array. FT-IR signature of Li₂MgSnO₄ compound synthesized using UAC method is depicted in Fig. 3a. The vibrational frequencies at 441, 480, 1440 and 1597 cm⁻¹ are attributed to the possible stretching and bending vibrational modes of Mg–O–Mg and O–Mg–O groups [10]. Similarly, the vibrational band observed at 676 cm⁻¹ in Fig. 3a may be ascribed to the stretching vibration of Sn–O [8]. Since the FT-IR signals are recorded in the frequency range of 400– 2000 cm⁻¹, the resonance frequencies of alkali metal cations (200–400 cm⁻¹) in their octahedral interstices (LiO₆) becomes out of scope of the present study.

The broad room temperature ⁷Li NMR spectra recorded for the ⁷Li nucleus (I = 3/2) of Li₂MgSnO₄ compound with a single in-

tense resonance at 0 ppm is displayed in Fig. 3b. Also, it is evident from Fig. 3b that the presence of a couple of spinning side bands is seen, due to the quadrupole broadening of the satellite lines. Since, the observation of an intense resonance at 0 ppm is the characteristic feature of a hexagonal type crystal lattice structure [11], the hexagonal crystallite structure of Li₂MgSnO₄ is confirmed using ⁷Li NMR study, as deduced already from XRD results.

3.3. Electrochemical characterization charge-discharge studies

Generally, tin based anodes with larger particle size undergo pulverization rapidly during charge–discharge cycles due to abnormal volume expansion, resulting in a rapid drop in reversible capacity, upon cycling [12]. However, this pulverization is less extensive with the size reduced particles, and so it is postulated that electrodes with sub-micron sized particles may reduce the extent of pulverization and enhance the electrochemical behavior upon cycling [12]. In order to realize such reduced particle size only, UAC method has been deployed in the present study with a view to obtain better electrochemical properties from Li₂MgSnO₄ anode ultimately.

Voltage vs. capacity profile of Li_2MgSnO_4 anode cycled between 0–3.5 V at a constant current drain of 0.5 mA is depicted in Fig. 4a. The initial OCV of the Li_2MgSnO_4 anode (2.56 V) was found to rise

Fig. 3. (a) Room temperature FT-IR spectra and (b) MAS ^7Li NMR spectra of Li_2MgSnO_4.

Fig. 4. (a) Voltage vs. capacity and (b) cycle life behavior of Li₂MgSnO₄.

N. Jayaprakash, N. Kalaiselvi/Electrochemistry Communications 10 (2008) 891-894

to 3.18 V in the second cycle, which was raised further to the level of 3.24 V in successive cycles, as indicated in Fig. 4a. However, upon Li⁺ intercalation, the potential of the Li₂MgSnO₄ anode dropped quickly to 1.0 V plateau region in the first cycle, which was moved further to a broader plateau around 1.2 V in the progressive cycles, due to the formation of Li₂O [13]. According to the reports of Behm and Connor et al. [14,15], the appearance of plateau region and the electrochemical behavior of Sn based oxides vary generally as a function of structure and the type of counter cation present in the matrix, respectively. As expected, the voltage *vs.* capacity behavior of the synthesized Li₂MgSnO₄ anode varies significantly from that of SnO₂, which is an indication that the presence of excess of lithium and the Mg dopant are highly effective in addressing the irreversible capacity loss and structural stability problems of conventional anodes.

Further, it is understood from the observed specific capacity value of 794 mA h/g that a maximum utilization of \sim 7.2 lithium per formula unit is possible with the Li₂MgSnO₄ anode. Originally, the Li₂MgSnO₄ anode has displayed an initial discharge capacity (Qdc) of 794 mA h/g against a charging capacity (Qc) of 504 mA h/g, thus corresponding to an acceptable irreversible capacity loss of \sim 20% (Fig. 4b). On the other hand, the second cycle, Qdc and Qc values of Li₂MgSn₄ anode were found to be 621 and 575 mA h/g, respectively, leading to an enhanced coulombic efficiency of 92.8%. Similarly, a steady state anode capacity of \sim 590 mA h/g, a value almost greater than 1.5 times than that of carbonaceous anodes with a slightly varying coulombic efficiency in the range of ${\sim}90\%$ has been observed up to 30 consecutive cycles, which is the significance of the present study. In other words, despite the 20% initial irreversible capacity values, the progressive specific capacity values of Li₂MgSnO₄ anode was found to get stabilized upon extended cycling. Hence, it may be deduced that the Li₂MgSnO₄ anode of the current study has rendered apparently high specific capacity values, thus realizing the targeted aim of the study.

4. Conclusion

The physical and electrochemical behavior of a novel Sn based Li_2MgSnO_4 has been studied using various techniques including electrochemical charge–discharge studies. By choosing the well known combustion method with urea as the fuel (UAC method), fine internal dispersion of particles were obtained. A steady state capacity of ~590 mA h/g has been demonstrated by the Li_2MgSnO_4 anode material synthesized through the present study, thus qualifying the same as an alternative novel category anode with for use in rechargeable lithium batteries.

Acknowledgements

The authors are thankful to the Department of Science and Technology (DST), New Delhi for financial support to carry out this work. Further, the authors thank Dr. S. Radhakrishnan for recording ⁷Li NMR.

References

- [1] A. Rougier, P. Graveau, C. Delama, J. Electrochem. Soc. 146 (1999) 1168.
- [2] A. Anani, S. Crouch-Baker, R.A. Huggins, J. Electrochem. Soc. 134 (1987) 3098.
- [3] M. Winter, J.O. Besenhard, Electrochem. Acta 45 (1999) 31.
- [4] K.D. Kepler, J.T. Vaughey, M.M. Thackeray, Electrochem. Solid State Lett. 2 (1999) 307.
- [5] P. Limthongkul, H. Wang, E. Jud, Y.M. Chiang, J. Electrochem. Soc. 149 (9) (2002) A1237.
- [6] C. Pouillerie, L. Croguennec, C. Delmas, Solid State Ionics 132 (2000) 15.
- [7] J. Yang, Y. Takeda, N. Imanishi, O. Yamamoto, J. Electrochem. Soc. 147 (5) (2000) 1671.
- [8] N. Jayaprakash, N. Kalaiselvi, Y.K. Sun, Electrochem. Commun. 10 (2008) 455.
- [9] N. Jayaprakash, N. Kalaiselvi, C.H. Doh, Intermetallics 15 (2007) 442.
- [10] Inorganic Library of FT-IR Spectra- Minerals, NICODOM, Vol. 1, 1998.
- [11] N. Jayaprakash, N. Kalaiselvi, P. Periasamy, Nanotechnology 19 (2008) 025603.
- [12] P. Patel, I.S. Kim, J. Maranchi, P. Kumta, J. Power Sources 135 (2004) 273.
- [13] F. Li, Q.Q. Zou, Y.Y. Xia, J. Power Sources 177 (2008) 546.
- [14] M. Behm, J.T.S. Irvine, Electrochim. Acta 47 (2002) 1727.
- [15] P.A. Connor, J.T.S. Irvine, J. Power Sources 97–98 (2001) 223.