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Computation of Current Distributions using
FEMLAB

An efficient method for the computation of current density and surface concen-
tration distributions in electrochemical processes is analyzed using the commer-
cial mathematical software FEMLAB. To illustrate the utility of the software, the
procedure is applied to some realistic problems encountered in electrochemical
engineering, such as current distribution in a continuous moving electrode, par-
allel plate electrode, hull cell, curvilinear hull cell, thin layer galvanic cell,
through-hole plating, and a recessed disc electrode. The model equations of the
above cases are considered and their implementations into the software, FEM-
LAB, are analyzed. The technique is attractive because it involves a systematic way
of coupling equations to perform case studies.
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1 Introduction

The knowledge of current distribution in various geometrical
configurations of electrolytic cells is important both for the
analysis of data obtained in electrochemical experiments, and
for design and scale-up. Owing to the large number of vari-
ables, the nature of the problem is complex. In order to design
a reactor and also to understand the performance in this more
complicated process, it is essential to simultaneously take into
account several phenomena that influence the current distribu-
tion. Thus, it is necessary to solve for the concentration fields
and the potential field simultaneously. The solution of such
problems is often termed the tertiary current distribution.
Since the mathematical methods leading to an analytical solu-
tion are usually not applicable in more complicated cases, the
only possibility remaining is to use a semi-analytical software
approach.

Tertiary current distributions have not been treated exten-
sively. Newman [1] has discussed this class of problem, indi-
cating how to treat current distribution in cells where the
potential distribution in the bulk of the solution and the con-
centration distribution in the diffusion layer must be calcu-
lated simultaneously. These ideas [2] were applied to other
electrochemical cell geometries such as current distribution on
plane parallel electrodes, rotating spherical electrodes, continu-
ous moving sheet electrodes, etc. The computation methods

used in most of these cases are one or the other form of
Newman’s technique. In recent work, semi-analytical methods
or numerical methods have been used for calculating current
density distributions with respect to diffusion, migration, and
laminar convection, including high velocities and electrochem-
ical reaction kinetics [3–17].

In this work, the authors used the mathematical software,
FEMLAB, instead of the semi-analytical approach to represent
the current distribution. The technique is much simpler to
solve surface concentration and potential simultaneously. It is
easier for most researchers to use commercially available soft-
ware since they can treat a much larger range of conditions.
The model equations encountered in some realistic problems
in electrochemical engineering, such as current distribution in
a continuous moving electrode, parallel plate electrode, hull
cell, curvilinear hull cell, thin layer galvanic cell, through-hole
plating, and recessed disc electrode, are considered and their
implementations into the commercial mathematical software,
FEMLAB, are analyzed. The semi-analytical approach is also
indicated in section 4 for the current distribution computation
for validation of FEMLAB results.

2 Mathematical Analysis

A simple model considered for the evaluation of current distri-
butions involves the following assumptions: (i) a single ca-
thodic reaction takes place at the cathode, (ii) the concentra-
tion overpotential and the activation overpotential at the
counter electrode are zero, (iii) the transport and kinetic
parameters do not vary in space or time, (iv) the presence of
the cell wall and the counter electrode do not affect the flow
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boundary layer on the working electrode, and (v) the physical
properties of the electrolyte are constant and the cathode is of
primary interest.

Assuming that we impose a specific voltage drop, E1), across
the electrodes, the overall voltage balance may be written as:

E = Uohm + ga + gc (1)

where E is the difference between the applied cell voltage and
the thermodynamic equilibrium cell voltage. Uohm is the ohm-
ic voltage drop, ga and gc are the voltage drops due to activa-
tion polarization (i.e., kinetic effects) and concentration polar-
ization (due to concentration gradients between the electrode
surface and the bulk electrolyte), respectively.

The polarization equation is necessary to express the depen-
dence of the local rate of the reaction on the various concen-
trations and on the potential jump at the interface. The situa-
tion is the same here as in chemical kinetics or heterogeneous
catalysis. It is common to use the Butler-Volmer equation for
electrode kinetics of the form for metal/ion systems:

i � i0
CS

C∞

� �c

exp
anF

RT
ga

� �
� exp � bnF

RT
ga

� �� �
(2)

where i0 is the exchange current density, and a, b, and c are ki-
netic parameters.

In view of the assumption of an excess of supporting electro-
lyte, the potential difference associated with the concentration
variation is commonly written in terms of concentration over-
potential as follows:

gc �
RT

nF
lnCS (3)

The diffusion process is governed by a partial differential
equation that describes the way in which the concentration of
the electrochemically active species changes with respect to the
distance along the working electrode. It is fortuitous that simi-
lar diffusion phenomena, and hence equations, arise in many
areas of science and engineering, and in particular, describe
the uptake of a species in adsorbent or catalyst particles. Thus,
the steady-state laminar convective diffusion equation, V�(∇C)
= D∇2C, is used to describe the transport of the reactive ion
from the bulk to the electrode surface. The choice of spatial
coordinate and the boundary conditions depend on the elec-
trode geometry. The boundary conditions will be discussed
separately for each of the cell geometries.

In the electrolytic cell, the ohmic potential drop across the
concentration boundary layer is negligibly small compared to
the ohmic potential drop across the bulk of the electrolyte.
Therefore, the potential drop across the electrolyte is governed
by the Laplace equation, ∇2U, where U (x, y) represents the
local electrical potential.

Thus, to determine the current density and concentration
distributions along the electrode, the convective diffusion

equation and the Laplace equation must be solved simulta-
neously along with the electrochemical kinetics, using suitable
geometry-dependent boundary conditions.

3 Model Equations

3.1 Continuous Moving Sheet Electrode

Electrochemical processes such as electrolysis of brine and
electroplating of sheet metals and wires [18] make use of con-
tinuous moving electrodes. Consider one side of a continuous
semi-infinite flat sheet electrode moving with a constant veloc-
ity, Us, through an otherwise undisturbed electrolyte as shown
in Fig. 1. The sheet enters the cell through a watertight slot at
one end of the cell and leaves the cell at the opposite side
through a second slot. The motion of the solid surface induces
a flow of electrolyte in the direction of the sheet. The electrode
velocity is high so that the boundary layer approximation can
be used to describe the electrolyte flow near the electrode sur-
face. The steady-state laminar convective diffusion equation
for a continuous moving sheet is:

U
∂C

∂x
� V

∂C

∂y
� D

∂2C

∂y2
(4)

where U and V are the velocity components, and the choice of
spatial coordinate and the boundary conditions depend on the
electrode geometry. Assume the velocity variation in V is negli-
gible and the velocity profile assumed in this case was V = 0
and U = Us. The boundary conditions at the walls, the anode
(y = b) and the cathode (y = 0) are:

C(b, y) = C(L, b) = C∞ (4-a)

D
∂C�x� y�

∂y

����
y�0

� i�x�
nF

(4-b)
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Figure 1. Schematic diagram of a continuous moving sheet elec-
trode process.

–
1) List of symbols at the end of the paper.
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The following boundary conditions were used to solve the
potential field expressed by the Laplace equation:

∂�
∂x

� 0 at x � 0 (5-a)

and
∂�
∂x

� 0� x � L for 0 ≤ y ≤ b (5-b)

U = 0 at y = b for 0 ≤ x ≤ L (5-c)

∂�
∂y

� �i

j
at y � 0 for 0 ≤ x ≤ L (5-d)

3.2 Electroplating of a Through-Hole

We now consider the electroplating of high aspect ratio
through-holes as shown in Fig. 2. Plating inside through-holes
and crevices is critically important for innumerable technolog-
ical applications [19]. High-density circuits require thicker
boards with longer, smaller diameter holes. These trends make
it difficult to achieve uniform plating due to severe mass trans-
fer limitations [20]. The steady-state diffusion equation for
laminar convective diffusion in circular cylindrical coordinates
can be written as:

VZ�r�
∂C

∂z
� D

∂2C

∂r2
� 1

r

∂C

∂r

� �
(6)

where r and z are radial and axial distances. For small values of
z such that zD/2<Vz>R0

2 < 0.01, Leveque [21] recognized that
there is a diffusion layer near the tube wall where the second
term in the brackets of Eq. (6) becomes much smaller than the
first and the electrolyte velocity is approximately linear with
distance from the tube wall.

By inserting these approximations into Eq. (6), one obtains:

VZ�y�
∂C

∂z
� D

∂2C

∂y2
(7)

where VZ�y� � 4 � VZ �

R0
y (7-a)

and y is the normalized radial distance from the through-hole
wall, y = (R0 – r). <Vz> is the average electrolyte velocity in
the axial direction. In these situations, the boundary condi-
tions are:

C = C∞ at y = R0 for z > 0 (7-b)

C = C∞ at 0 ≤ y ≤ R0 for z ≤ 0, z > L (7-c)

∂C

∂y
� i�z�

nFD
at y � 0 for 0 ≤ z ≤ L (7-d)

For the Laplace equation, the following boundary condi-
tions are applied:

∂�
∂y

� 0 at z � 0 (8-a)

and
∂�
∂y

� 0 z � L for 0 ≤ y ≤ R0 (8-b)

∂�
∂y

� �i�z�
j

at 0 � z � L and y � R0 (8-c)

3.3 Plane Parallel Electrodes

Many industrial electrochemical processes use channel flow be-
tween two plane parallel electrodes as shown in Fig. 3. Due to
the importance of parallel electrodes, a great deal of effort has
been devoted to describing the current distribution [22–24].
The boundary conditions at the insulating walls and at the
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Figure 2. Definition sketch of a through-hole system under con-
sideration.

Figure 3. Locations of the plane parallel electrodes on the walls
of the flow channel.
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anode (y = b) are the same as in earlier cases, while the bound-
ary conditions at the cathode (y = 0) are:

∂C

∂y
� i

nFD
at y � 0 for 0 � x � L (9)

For this geometry, the Laplace equation is subjected to the
following conditions:

∂�
∂y

� 0 at y � 0 for x � 0 and x � L (10-a)

∂�
∂y

� �i

j
at y � 0 for 0 � x � L (10-b)

3.4 Hull Cell

The Hull cell is intended to act as a quick check on the health
of the electroplating bath. Using the cell in conjunction with
chemical analysis, it is possible to qualitatively and quantita-
tively analyze all of the major constituents of the bath. Consid-
er the Hull cell as shown in Fig. 4. Major effort has been con-
tributed towards the computation of current distribution in
the Hull cell [25]. The dimensionless governing equation for
the dimensionless potential inside the hull cell is given by
∇2U = 0.

For this geometry, the Laplace equation is subjected to the
following conditions:

∂�
∂x

� 0 at insulators (11-a)

U = 10 at cathode (11-b)

U = 0 at anode (primary) (11-c)

� ∂�
∂y

� Ja� at anode �secondary linear� (11-d)

� ∂�
∂y

� Ja�exp� � 0�5��

� exp �0�5��� at anode �secondary nonlinear� (11-e)

where Ja is the polarization parameter.

3.5 Curvilinear Hull Cell

Consider current flow between planar electrodes placed on
two radii of an annular section, forming a cell with concentric
cylindrical walls as shown in Fig. 5 [26]. The curved walls are
insulators and there are no variations in the axial direction of
the cylindrical coordinate system. The anode is reversible and
the expression for the cathodic reaction kinetics is linear. The
governing equation, in dimensionless form, is:

1

q
∂
∂q

�q ∂�
∂q

� � 1

q2

∂2�
∂h2 � 0 (12)

with the boundary conditions:

∂�
∂q

� 0 at q � 1 (12-a)

and
∂�
∂q

� 0 at q � 3 �insulator� (12-b)

� � 0 at h � p

2
�anode� (12-c)

and

�� P

q
∂�
∂q

� 1 at h � 0 �cathode with linear kinetics�
(12-d)

where P is the polarization parameter.
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Figure 4. Schematic diagram of a Hull cell.

Figure 5. Schematic diagram of a curvilinear Hull cell.
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3.6 Thin Layer Galvanic Cell

Consider the thin layer galvanic cell as shown in Fig. 6 [27].
The Laplace equation can be written in dimensionless form as:

∂�
∂y2

�2 ∂2�
∂x2

� 0 (13)

where ∈ = W/L is the aspect ratio with the insulator boundary
conditions at x = 0 and 1, and y = 1. The boundary condition
at y = 0 is given by:

∂�
∂y

� Ja∈2� 0 ≤ x ≤ a at the anode (13-a)

and

∂�
∂y

� Jc∈2��� 1� a ≤ x ≤ 1 at the cathode (13-b)

where a is the ratio of the anode length to the total length of
the cathode.

3.7 Recessed Disc Electrode

The primary current distribution and ohmic resistance are
evaluated for a disc electrode recessed in an insulating plane
(see Fig. 7). The analysis can also be used to determine the
ohmic resistance to flow of current through a pore of a separa-
tor. The primary current distribution is valid when concentra-
tion variations are negligible and when the resistance of the in-
terfacial reaction is zero. For these conditions, the distribution
of current density and potential is given by Laplace’s equation.
The boundary conditions are:

� � 0� as z2 � r2 (14-a)

� � V � at z � 0 and r � r0 (14-b)

∂�
∂z

� 0� at z � L and r � r0 (14-c)

and

∂�
∂r

� 0� at r � r0 and 0 � z � L (14-d)

The outer radius of the insulating plane (at z = L) is as-
sumed to be much larger than r0. The above geometry’s two-
dimensional analogue, given by Diem et al. [28] (Fig. 8), is
considered to be solved.

4 Semi-Analytical Method

Many of the electrochemical systems require common calcula-
tion procedures to analyze tertiary current distribution irre-

spective of the cell geometry. The
working electrode may take a different
position with respect to the counter
electrode, such as in the rectangular ge-
ometry where the electrodes are paral-
lel or through-hole plating, where the
electrodes are perpendicular. However,
the potential drop due to activation
polarization is constant in any geome-
try and, also, it is independent of posi-
tion along the electrode. The basic
computation methodology developed
here is based on this constant and uni-
form activation polarization property

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://www.cet-journal.com

Figure 6. Schematic diagram of a thin layer galvanic cell.

Figure 7. Schematic diagram of a recessed disc electrode.

Figure 8. Two-dimensional analogue to Fig. 7.
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of the electrode, and power series solution assumption for
convective diffusion. The main principle of the calculation
procedure consists of assuming the series solution for the sur-
face concentration and finding the expressions for evaluating
the series coefficients. A scaling of all parameters that appear
in the problem suggests that the results can be best presented
in terms of the dimensionless quantities.

X � x

L
; b	 � b

L
; C	

s � Cs

C∞
; i	 � nF

RT

L

k
i

Q	 � nF

RT
Q� where Q � ga�gc��ohm�E

(15)

The calculation procedure for the more general case is pre-
sented below. It can be readily extended to any geometry of
interest including the cases discussed in the previous section.
Introducing the dimensionless quantities into the governing
model equations, we have:

Voltage balance:

E* = U*
ohm + g*

a + g*
c (16)

Modified Butler-Volmer electrode kinetics:

i	 � JC	
s c exp a g	a

� 	� exp �b g	a
� 	
 �

(17)

The transfer coefficients, a and b, are usually 0.5. The pa-
rameter, c, is the electrochemical reaction order and it is 0.5. J
is the dimensionless exchange current density and represents
the ratio of the ohmic potential drop to the activation overpo-
tential. A large value of J implies that the ohmic resistance
tends to be the controlling factor for the current distribution.

Concentration overpotential:

g	c � lnC	
s (18)

The analytical solution of the steady-state laminar convec-
tive diffusion can be obtained in three steps: (i) Apply the La-
place transformation to Eq. (4) assuming that the velocity
component for the electrolyte along the y-direction is negligi-
ble, (ii) solve the resulting linear second-order ordinary differ-
ential equation with the corresponding boundary conditions
of the given geometry, and (iii) use the convolution theorem
and take the inverse Laplace transformation to get the com-
plete solution. The resulting expression that relates the vari-
ables, surface concentration and the local current density, can
be expressed as:

i	�X� � N

�X

0

dC	
s

dX

� �
X�t

dt

�X � t�q (19)

where t is a dummy variable, q is a constant (0 < q < 1), and N
is a significant parameter called the average dimensionless lim-
iting current density; both q and N depend upon the cell ge-
ometry and the corresponding boundary conditions used. The
dimensionless form of the Laplace equation can be written as:

∇2 U* = 0 (20)

To solve the system of equations from Eq. (16) to Eq. (20),
we have stated with the assumption of a power series for the
surface concentration, the following:

C	
s �

∞

n�0

anXnq (21)

Here again q is a parameter which depends on the analytical
solution of the convective diffusion equation, Eq. (19) (for the
moving sheet process, q = 1/2, whereas it is 1/3 for the other
two examples considered). It can be noted that using the con-
dition, Cs(0) = C∞, i.e., the bulk concentration of the reacting
species, the series coefficient, a0 equals 1.0. Taking the first
derivative of Eq. (21) with respect to X, the current density
distribution can also be expressed in terms of the assumed
power series using Eq. (19):

i	�X� � N
∞

n�1

n anqX�n�1�qb 1 � q� nq� � (22)

The modified Butler-Volmer electrode kinetics can be equa-
ted to the above series equation. The resulting expression is
then used to calculate the numerical value of the other series
coefficients. The expression is:

JC	
s c exp ag	a

� 	� exp �bg	a
� 	
 �

� N
∞

n�1

n anqX�n�1�qb 1 � q� nq� � (23)

orJ
∞

n�0

anXnq

� �c

exp a g	a
� 	� exp �b g	a

� 	
 �

� N
∞

n�0

�n � 1�an�1qXnqb 1 � q� �n � 1�q� �
(24)

Fig. 9 illustrates the technique in more detail. Despite the
nested iterations, the convergence is very rapid. The procedure
for evaluating series coefficients and, thus, the concentration
and current distributions is detailed below for the case of a
continuous moving sheet electrode process. The series solution
assumption for the surface concentration on the continuous
moving sheet electrode process is written as:

C	
s �

∞

n�0

anX
n

2 (25)

For this case, Eq. (19) reads (here q = 1⁄2 and a0 = 1.0 based
on the analytical expression for the convective diffusion equa-
tion):

i	 � N

�X

0

dC	
s

dX

� �
X�t

dt�����������
X � t


 (26)
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Using the series expression for surface concentration, we
have from the above equation that the local current density
can be expressed in series form as:

i	 � N
∞

n�1

n

2
anX

n�1

2 b
n

2
�
1

2

� �

Eq. (17) reads:

i	 � JC	
s c exp a g	a

� 	� exp �b g	a
� 	
 �

Equating the above two equations and then again equating
the like terms of X, we can get the expressions to evaluate the
series coefficients.

J
∞

n�0

anX
n

2

� �c

exp a g	a
� 	� exp �b g	a

� 	
 �

� N
∞

n�1

n

2
anX�n�1

2
�b

1

2
�
n

2

� �

a1N
1

2
b

1

2
�
1

2

� �
� JYac

0

a2N
1

2
b 1�

1

2

� �
� cJYac�1

0
a1

2

a3
3N

2
b

3

2
�
1

2

� �
� c�c � 1�JYac�2

0
a1

2
� cJYac�1

0
a1

2

a4
3N

2
b 2�

1

2

� �
� c�c � 1��c � 2�JYac�3

0
a3

1

8
� 2c�c � 1�JYac�2

0

×
a2

2
� c�c � 1�JYac�1

0
a1

2

a2

2
� cJYac�1

0
3a3

4

where Y � � exp�a g	a� � exp��b g	a�
� �

�

Assuming a value for activation polarization, the surface
concentration can be calculated at any given position on the
electrode using the above four equations and a0 = 1.0. This is
a series evaluation. The corresponding local current density
distribution is calculated from the electrode kinetics expres-
sion. The concentration overpotential can be calculated from
Eq. (18). Next, using the evaluated current density, the ohmic
potential drop can be computed from the analytical solution
of the Laplace equation for the respective geometry. Next, with
all the overpotentials in hand, the cell potential, E*, is calcu-
lated based on the output from the initially guessed activation
overpotential. If the absolute value of the relative percent dif-
ference between the calculated and specified cell potential is
greater than the specified tolerance (10–4), then the activation
polarization is adjusted and the procedure repeated until con-
vergence. If the absolute value of the relative percent difference
is less than the specified tolerance, the activation polarization
is recorded and the governing equations for average current
density and limiting current density are calculated, and quite a
few cases have already been demonstrated by this procedure
[9]. The major differences and advantages of this procedure
are: the developed method involves iteration for only one vari-
able instead of the doubly iterative calculation procedure used
in the conventional methods; the assumption of a power series
solution for Cs

* is alone required in the present method, unlike
an initial guess of the current distribution itself. Above all, the
technique developed will open up the possibilities to model
systems with irregular geometry, unusual boundary conditions
or multi-ion electrodeposition. The second striking feature en-
ables a very simple programming need for this methodology.
This capability becomes very important because, if the tertiary
current distribution is the main issue, the assumption of cur-
rent density distribution can produce coding intricacy and
conspicuous errors.

5 Implementation in FEMLAB

FEMLAB is a powerful tool with an interactive environment
for modeling. It is the first engineering tool that performs

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://www.cet-journal.com

Figure 9. Outline of the algorithm used to solve the model equa-
tions using the semi-analytical method.
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equation-based multiphysics modeling in an interactive envi-
ronment. The FEMLAB, a commercial package, is a toolbox
written in MATLAB and is used to solve the set of governing
equations. It solves systems of coupled partial differential
equations (PDE) of up to 32 independent variables. The speci-
fied PDEs may be nonlinear and time-dependent, and act on
one-, two- or three-dimensional geometry. The geometry of
the storage is defined. The equations are written in partial dif-
ferential form in line with program definitions, and initial and
boundary conditions are determined. The mesh convergence is
verified with refined mesh sizes. A time step of 1000 s, 1866
nodes, and 8080 element mesh size were considered to be
appropriate.

The FEMLAB provides a number of predefined partial dif-
ferential equations (PDEs) from several areas of science and
engineering (referred to as application modes). Additional
models with specific PDEs can be defined. All equations are
solved simultaneously by applying the finite element method
(FEM). A specific documentation of all the abilities of
FEMLAB can be found in the manuals [29]. These manuals
provide the numerical solution strategy used in this work
along with detailed information on the type of solvers and
time-stepping procedure. Given the geometry data, an initial
finite element mesh is automatically generated by triangulation
of the domain. The mesh is used for discretization of the PDE
problem and can be modified to improve accuracy. The geom-
etry, PDEs, and boundary conditions are defined by a set of
fields similar to the structure in the language C. A graphical
user interface is used to simplify the input of these data. For
solving purposes, FEMLAB contains specific solvers (like stat-
ic, dynamic, linear, nonlinear solvers) for specific PDE prob-
lems.

The modeling calculation procedures for concentration and
current distributions throughout the system using FEMLAB
are:
– Choose the “PDE” in Model Navigator, select “2D”, and

select “Convection and diffusion mode” for the convective
diffusion equation and “Conductive media DC” for the La-
place equation in application mode from the Multiphysics
menu.

– Draw the geometry.
– Set the boundary conditions.
– Add constants and expressions.
– Initialize the mesh.
– Solve the problem.
– If necessary, resize the mesh and solve again.

The computer used for the simulation in this work is a PC
with a 1.8 GHz processor with a 1 GB RAM. The time cost
varies from 30 min to 90 min depending on the case consid-
ered in the previous section.

The equations and boundary conditions were outlined in
section 3. Furthermore, all equations for the calculation of in-
terim values are supplied as expressions. Parameters and other
constant values are entered as constants. FEMLAB uses a trian-
gular mesh for 2D geometries. The results are calculated using
the stationary nonlinear solver. The result is the current and
concentration distribution of the system.

Furthermore, for all the simulation results presented in this
paper, the default mesh generation and solver are used. The

simulation times are fast (order ∼ seconds) for linear problems
such as the 2D Hull cell, curvilinear Hull cell, etc. The prob-
lems are summarized in Tab. 1a) whereas the geometrical pa-
rameters considered and the physical constants used are given
in the Tabs. 1b) and 2. The data of semi-analytical methods
were used to validate the results obtained from FEMLAB
methodology.
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Table 1a). FEMLAB methodology.

Boundary Conductive media
DC mode

Convective diffusion
mode

1. Continuous moving electrode

Anode V = 0 C i = 1

Cathode Inward current density, g = c –N i n = –C

Wall (x = 0) Insulation/symmetry C i = 1

Wall (x = L) Insulation/symmetry Convection/diffusion

2. Through-hole plating

Anode V = 0 C i = 1

Cathode Inward current density, g = C –N i n = –C

Walls Insulation/symmetry C i = 1

3. Plane parallel electrode

Anode V = 0 C i = 1

Cathode Inward current density, g = C –N i n = –C

Wall (x = 0) Insulation/symmetry C i = 1

Wall (x = L) Insulation/symmetry Convection/diffusion

4. Hull cell

Anode V = 0 (primary),
g = –Ja* V (secondary linear)

Cathode V = 10

Walls Insulation/symmetry

5. Curvilinear Hull cell

Anode V = 0

Cathode g = –x/0.001 and q = –x/0.001

Walls Insulation/symmetry

6. Thin layer galvanic cell

Anode g = –10 V

Cathode g = –10 (V–1)

Walls Insulation/symmetry

7. Recessed disc electrode

Anode V = 0

Cathode V = V

Walls Insulation/symmetry
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6 Results and Discussion

6.1 Continuous Moving Sheet Electrode

Fig. 10a) shows the current distribution for a continuous mov-
ing sheet electrode. The current density is highest at the lead-
ing edge where the concentration boundary layer is thin and
the rate of mass transfer is high; then the concentration
boundary layer grows gradually from the leading edge and the
current density decreases. At the trailing edge, the effect of the
concentration boundary layer is important and the current
density becomes lesser.

Fig. 10b) presents the surface concentration distribution.
The concentration effects increase with current density due to
mass transfer limitations. The surface concentration is equal to
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Table 1b). Geometrical parameters used in the model simula-
tion.

Moving Electrode Process

Length of the cell L 400 cm [8]

Height of the cell b 300 cm ”

Velocity of the moving electrode Us 2.5 cm s–1 ”

Through-hole Plating Process

Through-hole length L 0.8 cm [9]

Through-hole radius R0 0.04–0.20 cm ”

Plane Parallel Electrode Process

Height-to-electrode length ratio b/L 0.5–1.0 [14]

Hull cell

Potential at Cathode U 10 [15]

Curvilinear Hull Cell

Polarization parameter P 1 [15]

Thin Layer Galvanic Cell

Aspect ratio ∈ 0.001 [15]

Recessed disc electrode

Dimensions h/(L–m)
h/n

1.622
5.0

[18]
[18]

Table 2. Physicochemical and kinetic parameters employed in
the model simulation.

Parameter Symbol Value References

Conductivity of bulk solution j 0.4 X cm–1 [2]

Diffusivity [copper] D 5.2 · 10–6 cm2 s–1 ”

Cathodic transfer coefficient b 0.5 ”

Anodic transfer coefficient a 0.5 ”

Electrochemical reaction order c 0.5 ”

Cell temperature T 303 K ”

Electrolyte feed flow rate U 25 cm s–1 ”

Exchange current density i0 1.0 A cm–2 ”

Bulk concentration of reactant C∞ 1.0 mol cm–3 ”

Average velocity of electrolyte <V> 25.0 cm s–1 ”

Electrons produced/reactant ion n 2 ”

Cell geometry dependent
constant

q 0 < q < 1 –

Universal gas constant R 8.314 J mol–1 K–1 –

Faraday constant F 96 487 C mol– –

(a)

(b)
Figure 10. (a) Current density distribution for the continuous
moving sheet electrode process. (b) Dimensionless surface con-
centration distribution for the continuous moving sheet elec-
trode process.
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the bulk concentration at the leading edge and decreases
sharply with increasing distance along the electrode. The sur-
face concentration distribution can be uniform for the smallest
current. Current distribution strongly depends on the magni-
tude of the limiting current. The results are presented for the
first-order kinetics. A uniform current density can be achieved
if the average current density at the electrode is less than
78.5 % of the average limiting current density.

6.2 Electroplating of a Through-Hole

Typical electrolyte, kinetic, mass-transfer, and geometric
parameters encountered during copper deposition onto multi-
layered printed circuit boards are given in Tab. 2. We assume
symmetry of the anode position and agitation on both sides of
the board, and then the results are plotted for the entire
surface of the through-hole. Fig. 11a) is the graphical repre-
sentation of calculated dimensionless surface concentration

distribution. At relatively low values of applied potential, the
current distribution depends on the cell geometry, the charge
transfer characteristics of the electrochemical reaction, and the
electrolyte conductivity. In this situation, the current density is
highest at both ends of the through-hole because they are
nearer to the counter electrodes. As the applied potential is
increased, the solution inside the through-hole becomes
depleted in the reacting species. Consequently, the edges of
the through-hole are more accessible to the counter electrode
and are constantly being supplied with the reacting species.
Accordingly, they become more reactive with respect to the
interior regions as the applied potential is increased. This
causes the current distribution to become increasingly non-
uniform, as shown in Fig. 11b). The potential difference
decreases from the value at each end toward the middle of the
through-hole. As a result, the concentration and potential pro-
files counteract each other for the downstream half of the
through-hole.

6.3 Plane Parallel Electrodes

The simulation data describing the cathode process is given in
Tab. 2. Fig. 12a) shows the current distribution. Near the front
of each electrode, the current drops rapidly, behaving like a
secondary current distribution. However on the cathode, mass
transfer effects become more important with increasing x. The
limiting current occurs when the current distribution is lim-
ited by the mass transfer rate through the diffusion layer and
secondary current distributions occur when there is a surface
overpotential but no mass transfer effects. The concentration
distribution for the system is shown in Fig. 12b). The cathodic
current cannot continue to behave like a secondary current
because the reactant concentration has been reduced inside the
diffusion layer. For the cathode, the concentration drops rap-
idly at the front of the electrode. This behavior is caused by the
rapid depletion of reactant at the beginning. However, after
the current has dropped, the concentration has chance to
increase by diffusion into the diffusion layer; but concentra-
tion effects are relatively unimportant on the anode and the
anodic current continues to resemble a secondary current dis-
tribution.

6.4 Hull Cell

The primary current distribution throughout the system (for
unit conductivity, k) is shown in Fig. 13a) and for the anode,
it is shown in Fig. 13b).

The linear kinetics secondary current distribution at the an-
ode is obtained and shown in Fig. 13c) (for unit conductivity).
For various values of polarization parameter, Ja, the distribu-
tion is plotted. Note that as Ja increases, primary current distri-
bution is approached (Fig. 13d)).

The secondary nonlinear current distribution in the system
is shown in Fig. 13e) and the distribution in the anode is
plotted in Fig. 13f). For higher values of the polarization
parameter, Ja, the primary current distribution is obtained as
expected.
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(a)

(b)
Figure 11. (a) Calculated surface concentration distributions
within a through-hole. (b) Current density distribution within a
through-hole.
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6.5 Curvilinear Hull Cell

The current distribution is shown in Fig. 14. All the plots given
in [16] for different polarization parameters can be completely
reproduced with our solution technique by merely solving
with P as a parameter in the boundary condition. The current
distribution is found as a function of geometric ratios and a
dimensionless polarization parameter. It is suggested that a cell
of this geometry may be used to measure quantitative throw-
ing power as well as to observe qualitative properties of plat-
ing-bath solutions.

6.6 Thin Layer Galvanic Cell

The potential distribution is obtained by solving Eq. (12),
which is shown in Fig. 15a) for a = 0.2 and ∈ = 0.001.
Secondary current distributions for different values of the
polarization parameters are plotted in Fig. 15b). Also, a
similar boundary value problem arising in a cylindrical thin
layer galvanic cell [27] can be solved easily using our tech-
nique.

6.7 Recessed Disc Electrode

The ratio m/n is analogous to L/r0. Since, in two dimensions,
currents cannot flow to infinity without an infinite potential
drop, the counter electrode is placed at a finite distance from
the working electrode. Placing the counter electrode too close
to the working electrode distorts the current distribution on
the supposedly “isolated working electrode”. The primary cur-
rent distribution is shown in Fig. 16. The results can be used
to design a cell that would have an approximately uniform cur-
rent distribution in the absence of concentration variations.
With convection, the mass transfer limited current distribution
can be non-uniform.

7 Conclusion

The mathematical software FEMLAB approach that calculates
the simplified current density distribution and concentration
profiles of an electrochemical cell is presented. The results are
validated by referring to the previously reported experimental
and theoretical results as well as using the semi-analytical soft-
ware approach that is presented in section 4. The models used
are based on the successful theories and principles of electro-
chemistry that can capture all the activities involving electro-
chemistry in the industrial processes. The method requires no
coding to solve for steady-state convective diffusion. Moreover,
within the context of its limitations, this computational meth-
od can be extended to treat various cell operational modes.
Seven test problems from classical electrochemical engineering
are solved and discussed. Surface concentration and current
density distribution on the electrode are computed for a con-
tinuous moving electrode, plane parallel electrode, and
through-hole plating processes. The latter systems are solved
for primary and secondary current distributions.
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(a)

(b)
Figure 12. (a) Dimensionless current distribution for a plane
parallel electrode process. (b) Surface concentration distribution
for a plane parallel electrode process.
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(a) (b)

(c) (d)

(e) (f)
Figure 13. (a) Primary current density distribution in a Hull cell. (b) Primary current density distribution at the anode. (c) Linear Kinetics
– Secondary current density distribution in a Hull cell (polarization parameter, Ja = 1). (d) Linear Kinetics – Secondary current density dis-
tribution in a Hull cell, effect of polarization parameter, Ja. (e) Nonlinear secondary current density distribution in a Hull cell (polarization
parameter, Ja = 100). (f) Nonlinear secondary current density distribution in a Hull cell for Butler-Volmer boundary conditions.
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Symbols used

b [m] distance between the counter
electrode and the working
electrode

b* [–] dimensionless electrode distance
defined as b/L

C [g-mole L–1] concentration of the reacting ion
C∞ [g-mole L–1] bulk concentration of the

reacting ion
Cs [g-mole L–1] concentration of the reacting ion
Cs

* [–] dimensionless concentration of
the reacting ion

D [m2s–1] diffusion coefficient of the
reacting ion

E [V] difference between the applied
cell voltage and the
thermodynamic equilibrium cell
voltage

E* [–] dimensionless applied cell
voltage

F [C/equiv] Faraday constant, F = 96,
487 C/equiv

i [A cm–2] local current density at the
electrode

i* [A cm–2] dimensionless local current
density at the electrode

io [A/cm–2] exchange current density based
on the bulk concentration

iavg* [–] dimensionless average local
current density

ilim [A cm–2] local limiting current density
ilim* [–] dimensionless local limiting

current density
J [–] dimensionless exchange current

density
L [m] length of the electrode in the cell

l [–] dimensionless through-hole
radius, R0/L

n [–] number of electrons transferred
in the electrochemical reaction

N [–] average dimensionless limiting
current density

q [–] a constant dependent on the cell
geometry

Q [–] dummy variable used to
symbolize the types of potentials

R [J/(mol K)] universal gas constant,
R = 8.3143 J/(mol K)

R0 [cm] radial coordinate extending
from the thorugh-hole
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Figure 14. Secondary current density distribution on a curvi-
linear Hull cell (P = 1).

(a)

(b)
Figure 15. (a) Linear secondary current density distribution in a
thin layer galvanic cell ( Ja = 1, Jc = 1). (b) Linear secondary cur-
rent density distribution in a thin layer galvanic cell, effect of po-
larization parameter, Jc.
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T [K] temperature
U [m s–1] velocity component of the

electrolyte along the x-direction
Us [m s–1] velocity of the continuous

moving sheet electrodes
<U> [m s–1] average velocity of the electrolyte

along the surface coordinate
<Vz> [m s–1] average electrolyte velocity in the

axial direction
V [m s–1] velocity component of the

electrolyte along the y-direction
Vz [m s–1] axial component of the

electrolyte velocity
X [–] dimensionless surface

coordinate, x/L
Y [–] dimensionless axial coordinate

extending from the through-
hole wall surface, (R0 – R/R0)

Greek letters

U [V] electrode potential in the
electrolyte phase

c [–] an electrochemical parameter
related to the order of the
reactions

a, b [–] transfer coefficients
ga [V] activity overpotential
gc [V] concentration overpotential
j [mho/cm] conductivity of the electrolyte
Uohm [V] ohmic loss in the electrolyte

phase between the counter
electrode and the plane working
surface

ga* [–] dimensionless activity
overpotential

gc* [–] dimensionless concentration
overpotential

Uohm* [–] dimensionless ohmic loss in the
electrolyte phase between the

counter electrode and the plane
working surface

U* [–] dimensionless ohmic loss in the
electrolyte phase between the
counter electrode and the panel
surface
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Figure 16. Primary current distribution in a recessed disc elec-
trode.
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