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1. Introduction 

Besides electron microscopy, X-ray diffraction is a valuable tool 
to elucidate the structure of carbon nanotubes (CNTs). Compared 
to three-dimensional crystals with Bravais lattices periodic in all 
the three directions, CNTs have the periodicity only in one direc­
tion, i.e. along the tube axis. Consequently, the XRD profiles of 
CNTs are characteristically different from those of the conventional 
X-ray crystallography. While the analysis of the XRD data of 3-D 
crystals (both powder and single crystal) is presently supported 
by quite advanced theories, algorithms and softwares, the analy­
sis of the XRD data of CNTs is in its infancy. Further, one is yet to 
build a database of XRD for CNTs, similar to the ICDD Reference 
Library. Burian, Koloczek and their co-workers [1-3] have made 
the first attempts towards the eventual goal of putting CNTs on par 
with three-dimensional crystal structures. The work of Hall and 
co-workers [4] on 3-D crystal shapes and structures is also worthy 
of mention here as their research foreshadowed the correspond­
ing developments in the area of CNTs. Two of us (B.E. and D.S.), in 
related work, have advanced a mathematical algorithm to compute 
the 3-D shapes ofnano-crystals [5]. In the present paper, we report 
further progress in the same direction. 

In Section 2, we review the Debye function based analysis of the 
XRD of arbitrary structures and Section 3 describes the method of 
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computing the atomic co-ordinates of CNTs which enter as inputs 
to the Debye function. Taking advantage of the one-dimensional 
periodicity in CNTs, we develop in Section 4 an efficient compu­
tational algorithm for computing the Debye function of CNTs of 
arbitrary lengths. This is made possible by an interesting recurrence 
relation that we discovered for the XRD intensity as a function of 
the CNT length and an asymptotic linear regime resulting from this 
recurrence relation. Based on this asymptotic linearity, we propose 
in Section 5 methods of analyzing the XRD data of CNTs. [n Sec­
tion 6, we present XRD data of two types of CNTs simulated using 
the present algorithm, verify the presence of the asymptotic lin­
ear regime, indicate the generality and possible extensions of the 
method and propose it as a versatile tool for building a simulated 
reference library of XRD data for a wide range of CNTs. 

2. Debye function 

Debye function gives the diffraction intensity as a function of 
the scattering angle B or equivalently the scattering parameter s 
defined as 

2 sin(B)
s=--- (1)

A 

where A is the wave-length of the radiation. 
For systems containing only one type of atom, like pristine car­

bon nanotubes, the Debye function can be written as [4,1] 

2 ( D~Sin(2;rrSrij)) (2)[N(S) = IoN! (s) 1 + NL (2;rrsrr) 
i*j 1 
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where 10 is the incident intensity. N the number of atoms in the 
system (e.g. CNT), J(s) the scattering factor (available for most 
elements) and rij is the distance between atom i and j. D is the 
Debye-Waller factor which reflects the attenuation of the inter­
ference due to thermal vibrations and static random defects. In 
this article, we set D = 1. For aggregates containing several types 
of atoms. generalization of the Debye function is available [61 and 
CNTs loaded with hetero-atoms or molecules may be studied with 
its help. 

3. Atomic co-ordinates of CNTs 

The method by which carbon nanotubes can be generated from 
the graphene sheet and computing the atomic co-ordinates are well 
documented in the literature [1,7,8]. In order to make the presen­
tation self-contained. we summarize the method in this section. 

CNTs are rolled-up versions of the graphene sheet [7]. Using a 
pair of integers (k,l) and the Bravais lattice vectors G; and 0; of the 
graphene monolayer. construct the following two vectors: 

~ = kG; + 10; = (k, I) 

and 

~ ~ ~ k + 2/, 2k + I
 
T = tlOI + t202 = W
 

where Ch is called the chiral vector and Tthe translation vector. w is 
the greatest common divisor ofk + 21 and 2k + I. The chiral vector and 

the translation vector are perpendicular to one another (c;, .T= 0). 
The radius of the CNT is given by R=Ch /2rr. The CNT is generated by 
cutting the graphene sheet using the chiral and translation vectors 
and folding the resulting graphene segment. The three major types 
ofCNTs are: zig-zag (k,O). armchair (k.k) and chiral (k,1 "* k). 

For computing the CNT's atomic co-ordinates, we first generate 
the Cartesian co-ordinates ofthe atoms ofthe graphene segment for 
the chosen pair of indices (k,/), These co-ordinates are then trans­
formed to a cylindrical co-ordinate system in which the vector T 
is pointing along the y-axis. Now, the atomic co-ordinates (x, y) of 
the graphene are related to the atomic'co-ordinates (X, Y, Z) of the 
nanotube by 

(X, Y, Z) = [R cos (i) ,R sin (i) ,y] . 

4. An efficient algorithm for computing the Debye function 
of CNTs of arbitrary length 

Take a CNT of n unit cells, one stacked over the other along the 
tube axis. The Debye function contains a sum over all distinct pairs 
of atoms in the CNT. Let us start counting the number of intra-cell, 
inter-cell and the total pairs of atoms: 

Number of intra-cell pairs of atoms = nm m; 1 (3) 

Number of inter-cell pairs of atoms = nC2m2 (4) 

Number of total pairs of atoms = (~2) n2-(T) n (5) 

where m is the number of atoms in the unit cell. 
Clearly. the total number of pairs of atoms in the CNT and hence 

the computational time grows as n2• Though this is a polynomial 
time problem, the times required may be excessive for large nand 
m. 

We can make the algorithm more efficient if we note that the 
nC2 inter-cell combinations are not all distinct, thanks to the one­
dimensional periodicity of the CNT along the tube axis. 

Table 1 
lI1ustrating the grouping together of identical inter-cell combinations when the 
number of cells in the CNT is six (n =6). 

In fact, one can enumerate and group identical inter-cell com­
binations together according to the inter-cell distance in a table. 
Table 1 illustrates this idea for a CNT with 6 unit cells. 

In Table 1, the inter-cell combination (i, j) stands for all the 
inter-cell pair interactions between the ith cell and the jth cell 
in the CNT. Clearly. it follows from Table 1 that only one unit of 
computations (for the m2 carbon-atom pairs. where m is the num­
ber of carbon atoms in the unit cell) is required for each inter-cell 
distance u. For n =6, there are five inter-cell distances. Therefore 
the total number of computational units required is n - 1, where 
n is the number of unit cells in the CNT. To this we must add the 
intra-cell computations, m(m - 1)/2 in number, which needs to be 
performed only once, 

.'. The total number ofpair-interactions to be computed 

2( 1) m(m-l)
= m n- + 2 (6) 

Compare this with the number of pair-interactions that should be 
computed in the brute-force method: 

(n-l)n 2 nm(m-1) nm(( 1) ( 1)
--2-m + 2 = T n - m + m - I 

nm 
= T(nm -1) (5) 

By equation (6), the computational time required grows linearly 
in n, whereas it grows parabolically with n in the brute-force algo­
rithm. Hence we used the Iinear-in-n algorithm. Fig. 1 confirms that 
the CPU time varies linearly with the length of the CNT if we use 
this fast algorithm. 
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Fig. 1. CPU time vs. tube length for (5,5) CNT. The length is normalized using the 
unit cell length of the CNT. 
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A recurrence relation for the intensity IN(S): 

(7)1NI') ~ /of'!,) (N+Df; ';I~~::::) ) 
where N is the total number of carbon atoms in the CNT. N: nm. 

Write the Debye function using n: 

2 ( ,,",sin(2nSrij ))
In(s) = 10 xl (s) n x m + LJ (2nsrr) (8) 

i fj U 

The summation in this equation can be resolved into a total of n 
terms using the periodicity of the CNT and the ideas which were 
developed above. 

n-l 

L 
Sin(2nSrij) - L ­

(2 ) - (n u)Su (9) 
.. nsrij 
I fJ u~o 

where Su represents all the terms, in the summation, which con­
nects two unit cells separated by an inter-cell distance u (See 
Table 1). So stands for the contribution of intra-cell interactions, 
n in number. 

Now, taking the difference between In+l (s) and In(s), 

n n-1} 
= lof2(s) (n + l)m + ~(n + 1 - u)Su - nm - ~(n - u)Su{ 

(to) 

(11 ) 

n 

In+1 (s) = In(s) + lof2(s). m + lof2(s) LSu (12) 
u~o 

The sum L~=oSu converges fast and hence for sufficiently large 
n, In(s) versus n plot will be linear for any given scattering parame­
ter. The advantage of this asymptotic linearity is that, knowing the 
slope and the intercept ofthis asymptote, the diffracted X-ray inten­
sity for any length ofthe CNT follows easily without any additional 
computation. Interestingly, this linear regime is reached within a 
few unit cells. 

Table 2
 
Slopes and intercepts (by the method of Least Squares).
 

5. Analysis of XRD-data of CNTs 

Any given CNT sample may consist of(I) only one type ofCNT but 
with a distribution of lengths and (II) a mixture of several types of 
CNTs with a distribution of their lengths. We need separate strate­
gies to cull out information from the XRD's corresponding to these 
two cases. In this section we outline methods of analyzing the XRD 
using the developments in the two previous sections. 

5.1. Case I 

In section 4, we showed that, for sufficiently long CNTs, the XRD 
intensity for any given scattering parameter s is linearly related to 
the tube length n. 

In(s) = f..L(s)n + )..(s) (13) 

If there are W n CNTs of length n in the sample, the total observed 
intensity will be 

I(s) = L wnln(s) (14) 

I(s) = f..L(s) LWnn +)..(S)LWn (15) 
n 

where.LnWn is the total number of CNTs and Lnwnn/L Wn then
average length of the CNTs in the sample. Clearly, to find these two 
unknowns, the observed XRD intensities at two values of s, cor­
responding to two different XRD peaks, will suffice. The slope and 
intercept parameters f..L( s) and )..(s) are theoretically known for each 
XRD peak. They are presented in Table 2 for (5,5) and (8,0) CNTs. 

5.2. Case II 

This case applies to a CNT sample where there are several tube 
types labeled by a parameter t which runs from 1 to T. Further, the 
length nt of a CNT of type t may have a distribution. 

(b) jlC- ...... 

Fig. 2. (a) SWCNToftype (5.5). (b) SWCNToftype (8.0). 
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Fig. 3. (a) Simulated XRD for SWCNT of type (5.5). Normalized intensity is plotted against the scattering parameter (A-l). (b) Simulated XRD for SWCNT of type (8,0). 
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Normalized intensity is plotted against the scattering parameter (A-l). 

Now, equations analogous to Eqs. (13 )-( 15) can be written down: 

In,(s) = !Lt(s)nt + At(S) 

1(5) = LLWn,ln,(S) 
n,	 t 

Including the over-all constant C, which may be used for making any 
background correction, we have 2T+ 1 unknowns for the mixture 
of T number of types of CNTs. Obviously, we require the intensities 
of the XRD at that many peaks and the corresponding theoretical 
slopes and intercepts !Lt(s) and At(S). 

We would have liked to illustrate the usefulness ofthis method 
on XRD data collected from real CNT samples. We tried hard to 
obtain, from several sources, suitable experimental XRD data for 
this purpose. However, we faced two major hurdles: paucity ofXRD 
data on pure CNT samples to which one may apply the method 
advanced in case I above. Analysis of mixed or polydisperse CNT 
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Fig. 4. Peak intensities YS. Tube length for (5,5) CNT. The length is normalized using 
the unit cell length of the CNT. Point (first peak); cross (second peak); circle (third 
peak); diamond (fourth peak); box (fifth peak). 

samples can be made using the method outlined in case II. However, 
this analysis will require a library of simulated XRD data on a host 
of CNT types. As we have just started building this library in the 
present work, we hope to apply these methods to real systems once 
we have equipped ourselves with a library of simulated XRD's for 
carbon nanotubes. (The authors thank an anonymous reviewer for 
suggestions in this regard.) 

6. Results and discussion 

In this paper, we have restricted ourselves to single-walled CNT 
(SWCNT), though the method equally applies to multi-walled CNTs 
too. Two types ofSWCNTs were selected [Fig. 2(a) and (b) land thei r 
XRDs simulated using the Debye function [Fig. 3(a) and (b)]. The 
XRD intensity In(s) versus the tube length nwas plotted for the first 
5 peaks of these two SWCNTs [Figs. 4 and 5]. Note the asymptotic 
linear region theoretically anticipated in Section 4 above. The slope 
and intercept parameters are collected together in Table 2, 

The main goal of the present work has been to standardize 
a method based on the Debye function for computing the XRD 
profiles of carbon nanotubes. Using this method one can build a 
database analogous to the lCDD database for 3-D crystals. While 
the peak positions are characteristic of the CNT type, the peak 
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Fig.5. Peak intensities YS. tube length for (8,0) CNT. The length is normalized using 
the unit cell length of the CNT. Point (first peak); cross (second peak); circle (third 
peak); diamond (fourth peak); box (fifth peak). 
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intensities measure the length of the CNT. Equipped with the peak 
positions and the intensities data, the computational schemes out­
lined in Section 5 can provide information on the types of CNTs and 
the average length ofeach type of CNT present in the sample. 

7.	 Conclusion 

The algorithm advanced in the present study is equally appli­
cable to multi-walled carbon nanotubes and also to CNTs modified 
by incorporating guest atoms or molecules [9]. The needed gener­
alization of the Debye formula is already known [6]. The effect of 
high temperatures or pressures on the CNT structures may also be 
probed. 
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