Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water – A novel approach

Subramanyan Vasudevan *, Jothinathan Lakshmi

Article Info

Article history:
Received 24 March 2011
Received in revised form 17 June 2011
Accepted 21 June 2011
Available online 26 June 2011

Keywords:
Electrocoagulation
Alternating/direct current
Cadmium removal
Adsorption kinetics
Isotherms

Abstract

The main objective of this study is to investigate the effects of AC and DC on the removal of cadmium from water using zinc as anode and as cathode. Various operating parameters on the removal efficiency of cadmium were investigated, such as initial cadmium ion concentration, initial pH, current density and temperature. The results showed that the removal efficiency of 97.8% and 96.9% with the energy consumption of 0.665 and 1.236 kWh/m³ was achieved at a current density of 0.2 A/dm² and pH of 7.0 using zinc as electrodes using AC and DC, respectively. For both AC and DC, the adsorption of cadmium was preferably fitting Langmuir adsorption isotherm, the adsorption process follows second order kinetics and the temperature studies showed that adsorption was exothermic and spontaneous in nature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that, heavy metals constitute a serious threat for the environment and human health, because they are not biodegradable and tend to accumulate in living organisms. Toxic heavy metals of particular concern in treatment of water include zinc, copper, nickel, mercury, cadmium, lead and chromium. These heavy metals, known as powerful toxic agents, are teratogenic and carcinogenic. Cadmium is one of the most toxic non-essential heavy metals present in the environment, even at low concentrations. Cadmium has been classified by US Environmental Protection Agency as a probable human carcinogen. Elevated level of cadmium ions arise from a variety of sources such as wastewater from metal plating industries, nickel–cadmium batteries, phosphate fertilizer, mining, pigments, stabilizers, alloys, petroleum refining, welding and pulp industries [1–3]. Cadmium poisoning includes kidney damage [4], lung insufficiency, cancer; it changes the constitution of bone, liver and blood [5]. Cadmium accumulated in the rice crops, it developed Itai–Itai disease and renal abnormalities including proteinuria and glucosuria. Cadmium containing compounds are known as carcinogens [6,7]. The drinking water guideline value is 0.005 mg/L [8].

Conventional methods for removing cadmium from water include ion exchange, reverse osmosis, co-precipitation, coagulation, complexation, solvent extraction, electrochemical treatment and adsorption [9–25]. Physical methods like ion exchange, reverse osmosis and electrodialysis have proven to be either too expensive or inefficient to remove cadmium from water. At present, chemical treatments are not used due to disadvantages like high costs of maintenance, problems of sludge handling and its disposal, and neutralization of the effluent [26]. The cadmium removal from water by adsorption using different materials has also been explored. The major disadvantages of this studied adsorbent are low efficiency and high cost. Recent research has demonstrated that electrocoagulation offers an attractive alternative to above-mentioned traditional methods for treating water [27].

Electrochemically generated metallic ions from the anode can undergo hydrolysis to produce a series of activated intermediates that are able to destabilize the finely dispersed particles present in the water to be treated. The electrochemical reactions may be summarized as follows:

At anode,

\[\text{Zn} \rightarrow \text{Zn}^{2+} + 2e^- \] (1a)

At cathode,

\[2\text{H}_2\text{O}(l) + 2e^- \rightarrow \text{H}_2(g) + 2\text{OH}^- \] (1b)

Overall,

\[\text{Zn}^{2+}(aq) + 2\text{H}_2\text{O}(l) \rightarrow \text{Zn(OH)}_2 \downarrow + 2\text{H}^+(aq) \] (2)

The generated Zn\(^{2+}\) ions will immediately undergo further spontaneous reactions to produce corresponding hydroxides and/or polyhydroxides in a wide pH range. These hydroxides/
polyhydroxides/polyhydroxy metallic compounds have a strong affinity with dispersed/dissolved ions as well as the counter ions to cause coagulation/adsorption. The advantages of electrocoagulation include high particulate removal efficiency, a compact treat-
ment facility, relatively low cost, and the possibility of complete automation. This method is characterized by reduced sludge pro-
duction, a minimum requirement of chemicals and ease of opera-
tion [29–31].

In general, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxi-
dation. These prevent the effective current transport between the anode and cathode, so the efficiency of electrocoagulation pro-
cesses declines. These disadvantages of DC have been overcome by adopting alternating current (AC) in electrocoagulation pro-
cesses. The main objective of this study is to investigate the effect of AC on the removal efficiency of cadmium using zinc as anode and as cathode. The effect of the initial concentration of cadmium ion, pH, temperature, current density and coexisting ions were investigated. The adsorption kinetics of cadmium ions on zinc hydroxide is also studied. For this, equilibrium adsorption behavior is analyzed by fitting the Langmuir and Freundlich isotherm mod-
els. The adsorption kinetics of electrocoagulation was analyzed using first, second order kinetic models. Finally, the effects of tem-
perature were studied to determine the nature of adsorption.

2. Materials and methods

2.1. Cell construction and electrolysis

The electrolytic cell consisting of a 1.0-L Plexiglas vessel (Fig. 1) that was fitted with a polycarbonate cell cover with slots to intro-
duce the anode, cathode, pH sensor, a thermometer and electro-
lytes. Zinc (Commercial Grade, India) of surface area (0.02 m²) acted as the anode and cathode and placed at an interelectrode dis-
tance of 0.005 m. The temperature of the electrolyte has been con-
trolled to the desired value with a variation of ±2 K by adjusting

the rate of flow of thermostatically controlled water through an external glass-cooling spiral. A regulated direct current (DC) was supplied from a rectifier (10 A, 0–25 V; Aplab model) and regulated alternating current (AC) was supplied from a source (0–5 A, 0–
270 V, 50 Hz; AMETEK Model: EC1000S).

Cadmium nitrate Cd(NO₃)₂·4H₂O (Analar Reagent, Merck, Germany) was dissolved in deionized water for the required concen-
tration. In all the experiments 20 mg/L of cadmium was used. The pH of the electrolyte was adjusted, if required, with HCl or NaOH solutions before the electrolysis starts. To study the effect of co-existing ions, in the removal of cadmium, sodium salts (Ana-
lar Grade, Merck, Germany) of phosphate (0–50 mg/L), silicate (0–15 mg/L), carbonate (0–250 mg/L) and arsenate (0–5.0 mg/L) was added to the electrolyte. All the experiments were repeated three times for reproducibility and the accuracy of the results are ± 1%.

2.2. Analytical method

The concentration of cadmium was determined using UV–Vis-
ible Spectrophotometer with cadmium kits (MERCK, Pharo 300, Germany). The SEM and EDAx of cadmium adsorbed zinc hydroxide coagulant were analyzed with a Scanning Electron Microscope (SEM) made by Hitachi (model s-3000h). The Fourier transform infrared spectrum of zinc hydroxide was obtained using Nexus 670 FTIR spectrometer made by Thermo Electron Corpora-
tion, USA. The XRD for zinc hydroxide coagulant was analyzed by X-ray diffractometer made by JEOL X-ray diffractometer (Type – JEOl, Japan). The initial concentration of carbonate, phos-
phate, silicate and arsenate were determined using UV–Visible Spectrophotometer (MERCK, Pharo 300).

3. Results and discussion

3.1. Effect of current density

The current density is an important factor that strongly controls the reaction rate in most electrochemical processes, and it deter-
mines the coagulant dosage in the electrocoagulation process. The current density was determined by dividing each measured current by the corresponding electrode area. The amount of cad-
mium removal and removal rate has increased by increasing cur-
rent density. Further, the amount of cadmium removal depends upon the quantity of adsorbent (zinc hydroxide) generated, which is related to the time and current density. To investigate the effect of current density on the cadmium removal, a series of experi-
ments were carried out by solutions containing constant cadmium loading of 20 mg/L, at a pH 7.0, with current density being varied from 0.1 to 0.5 A dm⁻² using both AC and DC current source. The results showed that the removal efficiency of 97.8% and 96.9% with the energy consumption of 0.665 and 1.236 kWh/m³ was achieved at a current density of 0.2 A/dm² and pH of 7.0 using zinc as elec-
trodes using AC and DC, respectively. The results are presented in Table 1. The results show that the removal efficiency of cadmium was higher and energy consumption was lower in the case of AC than DC. This may be due to the uniform dissolution of anode and cathode during electrodialysis in the case of AC. The removal efficiency was shows that the amount of cadmium adsorp-
tion increases with the increase in adsorbent concentration, which indicates that the adsorption depends on the availability of binding sites for cadmium.

3.2. Effect of pH

The pH is one of the important parameters affecting the perfor-
ance of electrochemical process. In order to examine the effect of

Fig. 1. Laboratory scale cell assembly. (1) DC power supply; (2) pH meter; (3) electrochemical cell; (4) cathodes; (5) anode; (6) electrolyte; (7) outer jacket; (8) thermostat; (9) inlet for thermostatic water; (10) outlet for thermostatic water; (11) PVC cover; (12) pH sensor and (13) magnetic stirrer.
the initial pH for AC and DC source, experiments were carried out in acidic (pH 2.0), slightly acidic (pH 5), neutral (pH 7.0), and alkaline (pH 10.0) media having 20 mg/L of cadmium containing solutions. The percentage of cadmium adsorption was maximum at pH 7, a decreasing trend in adsorption was observed when below and above pH 7 for both AC and DC source. At an initial concentration of 20 mg/L, maximum adsorption of 97.8% and 96.9% at pH 7 for AC and DC source, respectively was observed (Fig. 2). According to well known Zn–H2O Pourbaix diagram[32] and in thermodynamic point of view, that the precipitation of Zn(OH)2 would only be significant at pH ≥ 8.6, however, the interfacial pH-increase during the electrocoagulation process favored the zinc hydroxide formation and resulting higher removal efficiency at pH 7.0. At low pH, Cd2+ ions had to compete with H+ ions for adsorption sites on the adsorbent surface. As the pH increased, this competition weakens and more Cd+ ions were able to replace H+ ions bound to the adsorbent surface.

3.3. Effect of initial cadmium concentration

To study the effect of initial concentration, experiments were conducted at varying initial concentrations from 10–50 mg/L using AC and DC. The removal of Cd increased with time to obtain equilibrium at about 30 min (Fig. 3). The amount of cadmium adsorbed (q_e) increased from 6.37 to 48.21 mg/g as the concentration was increased from 10 to 50 mg/L for the AC source. The figure also shows that the adsorption is rapid in the initial stages and gradually decreases with progress of adsorption this is because of the great number of sites available for the sorption operation and adsorption equilibrium were then gradually achieved. The plots are single, smooth and continuous curves leading to saturation, suggesting the possible monolayer coverage to cadmium on the surface of the adsorbent [33]. In the case of DC the equilibrium time was found to be 50 min for all concentration studied (figure not shown).

3.4. Effect of coexisting ions

To study the effect of co-existing ions, in the removal of cadmium, sodium salts of carbonate (0–250 mg/L), phosphate (0–50 mg/L), silicate (0–15 mg/L), and arsenate (0–5.0 mg/L) was added to the electrolyte and electrolysis was carried out using AC with an initial pH of 7.

3.4.1. Carbonate

Effect of carbonate on cadmium removal was evaluated by increasing the carbonate concentration from 2 to 250 mg/L in the electrolyte. The removal efficiencies are 97.8%, 97.7%, 80%, 69.1%, 30.2%, and 16% for the carbonate ion concentration of 0, 2, 5, 25 and 50 mg/L, respectively. From the results it is found that the removal efficiency of the cadmium is not affected by the presence of carbonate below 5 mg/L. Significant reduction in removal efficiency was observed above 5 mg/L of carbonate concentration is due to the passivation of anode resulting, the hindering of the dissolution process of anode. It is also observed that, at higher concentrations of carbonate the energy consumption was higher due to anode passivation (Table 2).

3.4.2. Phosphate

The concentration of phosphate ion was increased from 2 to 50 mg/L, the contaminant range of phosphate in the ground water. The removal efficiency for cadmium was 97.8%, 97.8%, 71.3%, 52.6% and 43% for 0, 2, 5, 25 and 50 mg/L of phosphate ion, respectively.
The results are presented in Table 2. There is no change in removal efficiency of cadmium below 5 mg/L of phosphate in the water. At higher concentrations (at and above 5 mg/L) of phosphate, the removal efficiency decreases to 43%. This is due to the preferential adsorption of phosphate over cadmium as the concentration of phosphate increase.

3.4.3. Silicate

Effect of different concentrations of silicate on the removal efficiency of cadmium was investigated. The respective efficiencies for 0, 2, 5, 10 and 15 mg/L of silicate are 97.8%, 97%, 65%, 46% and 19%. The removal of cadmium decreased with increasing silicate concentration from 0 to 15 mg/L (Table 2). In addition to preferential adsorption, silicate can interact with zinc hydroxide to form soluble and highly dispersed colloids that are not removed by normal filtration.

<table>
<thead>
<tr>
<th>Concentration (mg/L)</th>
<th>Voltage (V)</th>
<th>Removal efficiency (%)</th>
<th>Energy consumption (kWh/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td>1.5</td>
<td>97.8</td>
<td>1.154</td>
</tr>
<tr>
<td>2.0</td>
<td>1.7</td>
<td>97.08</td>
<td>1.158</td>
</tr>
<tr>
<td>5.0</td>
<td>2.2</td>
<td>80.0</td>
<td>1.496</td>
</tr>
<tr>
<td>6.0</td>
<td>3.4</td>
<td>69.1</td>
<td>2.380</td>
</tr>
<tr>
<td>15.0</td>
<td>4.0</td>
<td>30.2</td>
<td>2.721</td>
</tr>
<tr>
<td>25.0</td>
<td>5.7</td>
<td>16.0</td>
<td>3.876</td>
</tr>
</tbody>
</table>

Phosphate			
Nil	1.5	97.8	1.154
2.0	1.7	97.0	1.158
5.0	1.8	71.3	1.224
10.0	2.3	46.0	1.564
15.0	2.6	19.0	1.768

Silicate			
Nil	1.5	97.8	1.154
0.5	1.5	81.2	1.154
1.0	1.5	70.2	1.154
3.0	1.9	64.0	1.292
5.0	2.0	31.0	1.360

Arsenate			
Nil	1.5	97.8	1.154
2.0	1.7	97.0	1.158
5.0	1.8	71.3	1.224
10.0	2.3	46.0	1.564
15.0	2.6	19.0	1.768

where, \(q_i \) is the amount of cadmium adsorbed on the adsorbent at time \(t \) (min) and \(k_1 \) (1/min) is the rate constant of first order adsorption. The integrated form of the above equation with the boundary conditions \(t = 0 \) to \(t > 0 \) \((q = 0 \) to \(q > 0 \)) and then rearranged to obtain the following time dependence function.

\[
\log(q_e - q_t) = \log(q_e) - k_1 t / 2.303
\]

Further, the kinetic data was fitted to the second-order equation as \[36\].

\[
dq/dt = k_2(q_e - q_t)^2
\]

where \(k_2 \) is the rate constant of second order adsorption. The integrated form of Eq. (5) with the boundary condition \(t = 0 \) to \(t > 0 \) \((q = 0 \) to \(q > 0 \)) is

\[
1/(q_e - q_t) = 1/q_e + k_2 t
\]

Eq. (7) can be rearranged and linearized as,

\[
t/q_i = 1/k_2 q_e^2 + t/q_e
\]

The linear plots of \(t/q_i \) versus time \(t \) at different concentrations are shown in Fig. 4. The second order kinetic values of \(q_e \) and \(k_2 \) were calculated from the slope and intercept of the plots \(t/q_i \) versus \(t \). Table 3 depict the computed results obtained from first and second order kinetic model for AC and DC source. An analysis of the data in Table 3 suggests that the kinetics of adsorption of cadmium on zinc hydroxide can be explained accurately by the second-order kinetic model. The calculated \(q_e \) values were found to be quite close to the experimental \(q_e \) values at all the concentrations studied (10–50 mg/L) for AC and DC source. So, it is inferred that the adsorption of cadmium on zinc hydroxide followed second-order kinetics.

![Fig. 4. Second order kinetic model plot of different concentrations of cadmium. Conditions: current density of 0.2 A/dm²; temperature of 303 K; pH of 7.0.](image-url)
3.6. Adsorption isotherm

An adsorption isotherm represents the equilibrium relationship between the adsorbate concentration in the liquid phase and that on the adsorbent’s surface at a given condition. A number of isotherms have been developed to describe equilibrium relationships. In the present study, the Freundlich, Langmuir and Dubinin–Radushkevich (D–R) models were used to describe the equilibrium data. To determine the isotherms, the initial pH was kept at 7 and the concentration of cadmium used was in the range of 10–50 mg/L.

3.6.1. Freundlich isotherm

The mathematical expression of the Freundlich model can be written as [37].

\[q_e = K_c^n C_e \] \hspace{1cm} (8)

Eq. (8) can be linearized in logarithmic form and the Freundlich constants can be determined as follows [38]

\[\log q_e = \log K_c + n \log C_e \] \hspace{1cm} (9)

where \(K_c \) is the Freundlich constant related to adsorption capacity, \(n \) is the energy or intensity of adsorption, \(C_e \) is the equilibrium concentration of cadmium. To determine the isotherms, the cadmium concentration used was 10–50 mg/L and at an initial pH 7. The Freundlich constants \(K_c \) and \(n \) values for AC and DC source were shown in Table 4. It has been reported that values of \(n \) lying between 0 and 1 indicate favorable adsorption. From the analysis of the results it is found that the Freundlich plots fit satisfactorily with the experimental data obtained in the present study.

3.6.2. Langmuir isotherm

The linearized form of Langmuir adsorption isotherm model is [39].

\[\frac{C_e}{q_e} = \frac{1}{q_b} + \frac{C_e}{q_o} \] \hspace{1cm} (10)

where \(C_e \) is the concentration of the cadmium solution (mg/L) at equilibrium, \(q_o \) is the adsorption capacity (Langmuir constant) and \(b \) is the energy of adsorption. Fig. 5 shows the Langmuir plot with experimental data. Langmuir plot is a better fit with the experimental data compare to Freundlich plots. The value of the adsorption capacity \(q_o \) as found to be 501.31 mg/g and 490.22 mg/g for AC and DC source. The essential characteristics of the Langmuir isotherm can be expressed as the dimensionless constant \(R_L \) [40]

\[R_L = 1/(1 + b C_o) \] \hspace{1cm} (11)

where \(R_L \) is the equilibrium constant it indicates the type of adsorption, \(b \), \(C_o \) is the Langmuir constant. The \(R_L \) values between 0 and 1 indicate the favorable adsorption (Table 4).

3.6.3. Dubinin–Radushkevich (D–R) isotherm

The D–R model, which does not assume a homogeneous surface or a constant adsorption potential as the Langmuir model, is used to test the equilibrium data and to estimate the mean free energy of adsorption (\(E \)). This model is given by,

\[q_e = q_{exp} (1 - B \varepsilon^2) \] \hspace{1cm} (12)

where \(\varepsilon \) is Polany potential, equal to RT \(\ln (1 + 1/C_o) \), \(B \) is related to the free energy of sorption and \(q_e \) is the Dubinin–Radushkevich (D–R) isotherm constant [41]. The linearized form is,

\[\ln q_e = \ln q_{exp} - 2BRT \ln [1 + 1/C_o] \] \hspace{1cm} (13)

The isotherm constants of \(q_e \) and \(B \) are obtained from the intercept and slope of the plot of \(\ln q_e \) versus \(\varepsilon^2 \) [42]. The constant \(B \) gives the mean free energy of adsorption per molecule of the adsorbate when it is transferred from the solid from infinity in the solution and the relation is given as

\[E = [1/\sqrt{2B}] \] \hspace{1cm} (14)

Table 3

<table>
<thead>
<tr>
<th>Current source</th>
<th>Concentration (mg/L)</th>
<th>(q_e (exp))</th>
<th>First order adsorption</th>
<th>Second order adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(q_e) (Cal)</td>
<td>(k_1 \times 10^3) (min/mg)</td>
</tr>
<tr>
<td>AC</td>
<td>10</td>
<td>6.37</td>
<td>36.24</td>
<td>-0.0038</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>15.22</td>
<td>40.22</td>
<td>-0.0041</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>24.01</td>
<td>49.36</td>
<td>-0.0056</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>34.69</td>
<td>59.44</td>
<td>-0.0078</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>48.21</td>
<td>61.73</td>
<td>-0.0133</td>
</tr>
<tr>
<td>DC</td>
<td>10</td>
<td>6.29</td>
<td>30.55</td>
<td>-0.0031</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>15.13</td>
<td>47.55</td>
<td>-0.0037</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>23.96</td>
<td>54.32</td>
<td>-0.0041</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>34.54</td>
<td>56.61</td>
<td>-0.0045</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>47.93</td>
<td>57.34</td>
<td>-0.0054</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Isotherm</th>
<th>Constants</th>
<th>AC</th>
<th>DC</th>
<th>AC</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td>(q_o) (mg/g)</td>
<td>501.31</td>
<td>490.22</td>
<td>0.0027</td>
<td>0.0019</td>
</tr>
<tr>
<td></td>
<td>(b) (L/mg)</td>
<td>0.0019</td>
<td>0.0019</td>
<td>0.8625</td>
<td>0.8625</td>
</tr>
<tr>
<td>Freundlich</td>
<td>(K_c) (mg/g)</td>
<td>1.441</td>
<td>1.236</td>
<td>1.112</td>
<td>0.9799</td>
</tr>
<tr>
<td></td>
<td>(n) (L/mg)</td>
<td>1.039</td>
<td>0.9847</td>
<td>1.039</td>
<td>0.9864</td>
</tr>
<tr>
<td>D–R</td>
<td>(Q_s) (\times 10^3 mol/g)</td>
<td>0.477</td>
<td>0.489</td>
<td>2.663</td>
<td>2.745</td>
</tr>
<tr>
<td></td>
<td>(B) (\times 10^3 \text{mol}^2/\text{j}^2)</td>
<td>0.0133</td>
<td>0.0133</td>
<td>6.99</td>
<td>6.21</td>
</tr>
<tr>
<td></td>
<td>(E) (kJ/mol)</td>
<td>0.7966</td>
<td>0.7966</td>
<td>0.8421</td>
<td>0.8346</td>
</tr>
</tbody>
</table>
regression coefficient (16 kJ/mol [43]). So the type of adsorption of cadmium on zinc which is smaller than the energy range of adsorption reaction, $8–16$ kJ/mol [43]. Therefore, it was found to be 6.99 and 6.21 kJ/mol for AC and DC, respectively. Hydroxide was defined as chemical adsorption.

Table 4 shows the correlation co-efficient values of different isotherm models for the adsorption of cadmium. The adsorption data show good fit to the Langmuir then Freundlich and D–R adsorption isotherm as depicted by the regression coefficient for these systems for both AC and DC.

Freundlich and D–R adsorption isotherm as depicted by the regression coefficient for these systems for both AC and DC.

Table 5
Pore diffusion coefficients for the adsorption of cadmium at various concentrations and temperature.

<table>
<thead>
<tr>
<th>Concentration (mg/L)</th>
<th>Pore diffusion constant $D \times 10^{-9}$ (cm2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.2211</td>
</tr>
<tr>
<td>20</td>
<td>0.9736</td>
</tr>
<tr>
<td>30</td>
<td>0.9561</td>
</tr>
<tr>
<td>40</td>
<td>0.9366</td>
</tr>
<tr>
<td>50</td>
<td>0.9178</td>
</tr>
<tr>
<td>313</td>
<td>0.9744</td>
</tr>
<tr>
<td>323</td>
<td>1.0215</td>
</tr>
<tr>
<td>333</td>
<td>1.4067</td>
</tr>
<tr>
<td>343</td>
<td>1.9825</td>
</tr>
</tbody>
</table>

The magnitude of E is useful for estimating the type of adsorption process. It was found to be 6.99 and 6.21 kJ/mol for AC and DC, which is smaller than the energy range of adsorption reaction, $8–16$ kJ/mol [43]. So the type of adsorption of cadmium on zinc hydroxide was defined as chemical adsorption.

Table 4 shows the correlation co-efficient values of different isotherm models for the adsorption of cadmium. The adsorption data show good fit to the Langmuir then Freundlich and D–R adsorption isotherm as depicted by the regression coefficient for these systems for both AC and DC. R^2 values between 0 and 1 further indicate a favorable adsorption of cadmium.

3.7 Effect of temperature

The effect of temperature for adsorption of cadmium on zinc hydroxide was investigated at four different temperatures ($313–343$ K). The amount of cadmium adsorbed on the adsorbent increases by increasing the temperature indicating the process to be endothermic. The diffusion co-efficient (D) for intraparticle transport of cadmium species into the adsorbent particles has been calculated at different temperature by

$$t_{1/2} = 0.03 \times \frac{r_o^2}{D}$$

where $t_{1/2}$ is the time of half adsorption (s), r_o is the radius of the adsorbent particle (cm), D is the diffusion co-efficient in cm2/s. For all chemisorption system the diffusivity co-efficient should be $10^{-5}–10^{-15}$ cm2/s [44]. In the present work, D is found to be in the range of 10^{-9} cm2/s. The pore diffusion co-efficient (D) values for various temperatures and different initial concentrations of cadmium are presented in Table 5.

To find out the energy of activation for adsorption of cadmium, the second order rate constant is expressed in Arrhenius form [45].

$$\ln K_c = \ln k_o - \frac{E}{RT}$$

where k_o is the constant of the equation (g/mg/min), E is the energy of activation (J/mol), R is the gas constant (8.314 J/mol K) and T is the temperature in K. The activation energy (7.335 kJ/mol for AC and 5.62 kJ/mol for DC source) is calculated from slope of the fitted equation. The free energy change is obtained using the following relationship:

$$\Delta G = -RT \ln K_c$$

where ΔG is the free energy (kJ/mol), K_c is the equilibrium constant, R is the gas constant and T is the temperature in K. The K_c and ΔG values are presented in Table 6. From the table it is found that the negative value of ΔG indicates the spontaneous nature of adsorption. Other thermodynamic parameters such as entropy change (ΔS) and enthalpy change (ΔH) were determined using van’t Hoff equation.

Table 5
Pore diffusion coefficients for the adsorption of cadmium at various concentrations and temperature.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>AC</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_c</td>
<td>ΔG (kJ/mol)</td>
</tr>
<tr>
<td>313</td>
<td>1.0068</td>
<td>-0.1122</td>
</tr>
<tr>
<td>323</td>
<td>1.146</td>
<td>-0.1279</td>
</tr>
<tr>
<td>333</td>
<td>1.1635</td>
<td>-0.1946</td>
</tr>
<tr>
<td>343</td>
<td>1.1742</td>
<td>-0.2678</td>
</tr>
</tbody>
</table>

Fig. 5. Langmuir plot (1/Ce Vs 1/qe). Conditions: pH of 7.0; current density: 0.2 A/dm2; temperature of 303 K; concentration of $10–50$ mg/L.

Fig. 6. Plot of ln K_c and 1/T. Conditions: pH of 7.0; current density of 0.2 A/dm2; temperature of 303 K; concentration of $10–50$ mg/L.
The enthalpy change and entropy change were obtained from the slope and intercept of the van’t Hoff linear plots of ln K_c versus $1/T$ (Fig. 6). A positive value of enthalpy change (ΔH) indicates that the adsorption process is endothermic in nature, and the negative value of change in internal energy (ΔG) show the spontaneous adsorption of cadmium on the adsorbent. Positive values of entropy change show the increased randomness of the solution interface during the adsorption of cadmium on the adsorbent. Enhancement of adsorption capacity of electro coagulant (zinc hydroxide) at higher temperatures may be attributed to the enlargement of pore size and or activation of the adsorbent surface. Using Lagergran rate equation, first order rate constants and correlation co-efficient were calculated for different temperatures (313–343 K). The calculated q_e values obtained from the first order kinetics agrees with the experimental q_e values better than the second order kinetics model. Table 7 depicts the computed results obtained from first and second order kinetic models. These results indicate that the adsorption follows first order kinetic model at different temperatures used in this study. From the table, it is found that the rate constant k_2 increased with increasing the temperature from 305 to 343 K. The increase in adsorption may be due to change in pore size on increase in kinetic energy of the zinc species and the enhanced rate of intraparticle diffusion of adsorbate.

3.8. A pilot plant study

A pilot plant capacity cell (Fig. 7) was designed, fabricated and operated for the removal of cadmium from water. The system consists of AC/DC power supply, an electrochemical reactor, a water tank, a feed pump, a flow control valve, a flow measuring unit, a circulation pump, settling tank, filtration unit provisions for gas outlet and treated water outlet. The reactor is made of PVC with an active volume of 3000 L. The zinc electrodes (anode and cathode) each consist of five pieces situated approximately 5 mm apart from each other and submerged in the solution. The total electrode surface area is 1500 cm² for both cathodes and anodes. The cell was operated at a current density of 0.2 A/dm² and the electrolyte pH of 7.0. The results showed that the removal efficiency of 97.8% and 96.9% with the energy consumption of 0.665 and 1.236 kWh/m³ was achieved at a current density of 0.2 A dm⁻² and pH of 7.0 using zinc as electrodes using AC and DC, respectively. The results were consistent with the results obtained from the laboratory scale, showing that the process was technologically feasible.

From the above results it is found that the energy consumption is higher in the case of alternating current than direct current for the removal of cadmium from water. This is because, alternating current is helpful to prevent the passivation of Zn anode during the electrolysis and avoid the extra energy consumption for resistance of zinc oxide film formed on the anode surface. The SEM images of Zn electrodes after electrolysis in cadmium

Table 7
Comparison between the experimental and calculated q_e values for different initial cadmium concentrations of 20 mg/L in first and second order adsorption kinetics at various temperatures and pH 7.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>q_e (exp)</th>
<th>First order adsorption</th>
<th>Second order adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_e (Cal)</td>
<td>K_1 (min/mg)</td>
<td>R^2</td>
</tr>
<tr>
<td>313</td>
<td>15.22</td>
<td>26.34</td>
<td>-0.0016</td>
</tr>
<tr>
<td>323</td>
<td>15.36</td>
<td>32.15</td>
<td>-0.0029</td>
</tr>
<tr>
<td>333</td>
<td>15.49</td>
<td>38.61</td>
<td>-0.0036</td>
</tr>
<tr>
<td>343</td>
<td>15.62</td>
<td>40.36</td>
<td>-0.0042</td>
</tr>
<tr>
<td>313</td>
<td>15.14</td>
<td>0.1126</td>
<td>0.9999</td>
</tr>
<tr>
<td>323</td>
<td>15.28</td>
<td>0.1637</td>
<td>0.9986</td>
</tr>
<tr>
<td>333</td>
<td>15.36</td>
<td>0.2865</td>
<td>0.9975</td>
</tr>
<tr>
<td>343</td>
<td>15.55</td>
<td>0.3346</td>
<td>0.9964</td>
</tr>
</tbody>
</table>

$$\ln K_c = \frac{\Delta S}{R} - \frac{\Delta H}{RT}$$

Fig. 7. Flow diagram of the pilot plant electrocoagulation system. (1) DC power supply, (2) electro coagulation cell, (3) water tank, (4) inlet pump, (5) flow meter, (6) gas outlet, (7) setting tank, (8) filter and (9) treated water.

Fig. 8. SEM images of the anode after electrocoagulation by (a) AC and (b) DC.
contaminated water showed that Zn was dissolved uniformly during alternating current electrocoagulation and less oxide formed on the surface during the electrolysis.

3.9. Surface characterization

3.9.1. SEM and EDAX characterization

In order to gain more insight into the effect of alternating current, the morphology of the electrode surface after two kinds of electrolysis (AC and DC) was characterized by SEM as shown in Fig. 8(a) and (b). It can be observed that when the AC was fed, less disordered pores formed and a smooth microstructure of zinc suggesting the zinc electrodes were dissolved uniformly during the electrolysis. While for the electrodes fed with DC, the electrode surface is found to be rough, with a number of dents. These dents are formed around the nucleus of the active sites where the electrode dissolution results in the production of zinc hydroxides. The formation of a large number of dents may be attributed to the anode material consumption at active sites due to the generation of oxygen at its surface.

Energy-dispersive analysis of X-rays was used to analyze the elemental constituents of cadmium-adsorbed zinc hydroxide (Fig. 9). It shows that the presence of cadmium, Zn and O appears in the spectrum. EDAX analysis provides direct evidence that cadmium is adsorbed on zinc hydroxide.

3.9.2. FTIR and XRD studies

Fig. 10 presents the FT–IR spectrum of cadmium–zinc hydroxide. The sharp and strong peak at 3537.58 cm\(^{-1}\) is due to the O–H stretching vibration in the Zn(OH)\(_2\) structures. The 1632.49 cm\(^{-1}\) peak indicates the bent vibration of H–O–H. The strong peak at 1046.94 cm\(^{-1}\) is assigned to the Zn–O–H bending. Cd–O vibration at 875.21 cm\(^{-1}\) also observed. The XRD spectrum of electrocoagulant (figure not shown), from the figure it is found that the electrocoagulation-by product showed the well crystalline phase of zinc hydroxide.

4. Conclusion

The results showed that the optimum removal efficiency of cadmium is 97.8\% and 96.9\% with the energy consumption of 0.665 and 1.236 kWh/m\(^3\) was achieved for AC and DC source at a current density of 0.2 A/dm\(^2\) and pH of 7.0 using zinc as anode and cathode. The results of the pilot scale study indicate that the process can be scaled up to higher capacity. For both AC and DC electrolysis the adsorption of cadmium preferably fitting Langmuir adsorption isotherm. The adsorption process follows second order kinetics. Temperature studies showed that adsorption was endothermic and spontaneous in nature. From the surface characterization studies, it is confirmed that the zinc hydroxide generated in the cell adsorbed cadmium present in the water.

Acknowledgment

The authors wish to express their gratitude to the Director, Central Electrochemical Research Institute, Karaikudi to publish this paper.

References

[8] Central Pollution Control Board, Ministry of Environment and Forests, Govt. of India, Delhi, Available from: <http://www.cpcb.nic.in>.

